• R.V. Radoga National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: burn trauma, myocardium, cell cycle, rats, cardiomyocytes, 0,9% NaCl solution, lactoproteinum with sorbitol, HAES-LX-5%


According to the WHO, the thermal trauma is on the third place among other injuries. Burned injury is not only damage to the skin, but also the traumatization of all organs and systems of the body as a result of the stress response of the vascular system and the effects of toxic products coming from the area of burn injury. Firstly, such damages affect cardiomyocytes and the microcirculation vessels of the heart. The purpose of our study was to evaluate the changes in the cell cycle of myocardial cells in the left ventricle of rats under conditions of blood substitutes infusion and in the correction of experimental burn injury with a 0,9% solution of NaCl. The burn trauma was modeled using the Regas’ method and placed a catheter into the lower vena cava for intravenous infusion. The following solutions were used for infusion: 0,9% NaCl solution, lactoproteinum with sorbitol (Lactoproteinum-C) and colloidal-hyperosmolar HAES-LX-5% solution. Flow cytometry of the nuclear suspension of left ventricular cardiomyocytes was performed on the 1st, 3rd, and 7th days of the experiment. The statistical analysis of the results was carried out using the “STATISTICA 6.1” program package. The results of the performed study show a fairly stable picture of cell cycle parameters in myocardial cells of animals without burn injury with a predominance, on the one hand, of cells present in the G0G1 phase and the presence of a certain balance between the processes of creation of nuclear DNA synthesis and apoptosis. Changes in the phase of cardiac myocyte cell cycle against the background of the thermal injury of the skin throughout the observation time indicate a prolonged, uncorrected cell cycle disorder and a lack of effective normalization on the background of the physiological solution usage in the first 7 days after burning trauma of the skin. The protective effect of HAES-LX-5% prevents over-strain of cells, as evidenced by the lower synthetic activity of nuclei of cardiomyocytes at all times of the experiment.


[1] Dzevulska, І. V., Kovalchuk, О. І., Cherkasov, E. V., Majewskyi, О. Ye., Shevchuk, Yu. G., Pastukhova, V. A., & Kyselova, T. M. (2018). Influence of lactoproteinum solution with sorbitol on dna content of cells of endocrine glands on the background of skin burn in rats. World of medicine and biology, 2(64), 033-039. doi:10.26724/2079-8334-2018-2-64-33-39

[2] Osadchaya, O. I., Boyarskaya A. M. & Sheyman, B. S. (2008). Effect of enterosorption on the content of pro- and anti-inflammatory mediators in severe thermal trauma. Internal Medicine, 3(16), 76-78.

[3] Ocheretna, N. P., Guminskiy, Yu. I., & Gunas, I. V. (2018). Indicators of cell cycle and dna fragmentation of spleen cells in early terms after thermal burns of skin on the background of using “lactoprotein with sorbitol” or HAES-LX-5%. Bulletin of scientific research, 1, 141-146. doi:10.11603/2415-8798.2018.1.8627

[4] Archana, M., Bastian, Yogesh, T. L., & Kumaraswamy K.L. (2013). Various methods available for detection of apoptotic cells – a review. Indian Journal of Cancer, 50(3), 274–283. doi:10.4103/0019-509X.118720

[5] Eick, B. G., & Denke, N. J. (2018). Resuscitative Strategies in the Trauma Patient: The Past, the Present, and the Future. J Trauma Nurs., 25(4), 254-263. doi:10.1097/JTN.0000000000000383

[6] Gavryluk, A. O., Galunko, G. M., Chereshniuk, I. L., Tikholaz, V. O., Cherkasov, E. V., Dzevulska, І. V., & Kovalchuk О. І. (2018). Indicators cell cycle and DNA fragmentation in cells of small intestine mucosa 14, 21 and 30 days after skin burns on the background of preliminary infusion of solution lactoprotein with sorbitol or HAES-LX 5%. World of Medicine and Biology, 1(63), 104-108 doi:10.26724/2079-8334-2017-4-62-104-108

[7] Gavryluk, A. O., Gunas, I. V., Galunko, G. M., Chereshniuk, I. L., & Lysenko, D. A. (2017). Indicators of the cell cycle and fragmentation of DNA of cells of small intestinal mucosa through 14, 21 and 30 days after burn skin damage on the background of infusion of 0.9% NaCl solution. Biomedical and Biosocial Anthropology, 29, 104-108. Retrieved from

[8] Guillory, A. N., Clayton, R. P., Herndon, D. N., & Finnerty, C. C. (2016). Cardiovascular Dysfunction Following Burn Injury: What We Have Learned from Rat and Mouse Models. International journal of molecular sciences, 17(1), 53. doi:10.3390/ijms17010053

[9] Gunas, I. V., Guminskiy, Yu. I., Ocheretna, N. P., Lysenko, D. A., Kovalchuk, О. І., Dzevulska, І. V., & Cherkasov, E. V. (2018). Indicators cell cycle and dna fragmentation of spleen cells in early terms after thermal burns of skin at the background of introduction 0.9% NaCl solution. World of Medicine and Biology, 1(63), 116-120. doi:10.26.724/2079-8334-2018-1-63-116-120

[10] Hernekamp, J. F., Neubrech, F., Cordts, T., Schmidt, V. J., Kneser, U., & Kremer, T. (2016). Influences of Macrohemodynamic Conditions on Systemic Microhemodynamic Changes in Burns. Annals of Plastic Surgery, 77(5), 523-528. doi:10.1097/SAP.0000000000000868

[11] Hoesel, L. M., Niederbichler, A. D., Schaefer, J., Ipaktchi, K. R., Gao, H., Rittirsch, D. ... Ward, P. A. (2007). C5a–blockade improves burn-induced cardiac dysfunction. J Immunol., 178(12), 7902–7910. DOI: 10.4049/jimmunol.178.12.7902

[12] Jeschke, M. G., Chinkes, D. L., Finnerty, C. C., Kulp, G., Suman, O. E., Norbury, W.B., … Herndon, D. N. (2008). Pathophysiologic response to severe burn injury. Ann. Surg., 248(3), 387–401. doi:10.1097/SLA.0b013e3181856241

[13] Korkmaz, H. I., Ulrich, M. M. W., van Wieringen, W. N., Vlig, M., Emmens, R. W., Meyer, K. W., … Niessen, H. W. M. (2017). The Local and Systemic Inflammatory Response in a Pig Burn Wound Model With a Pivotal Role for Complement. J Burn Care Res., 38(5), 796-806. doi:10.1097/BCR.0000000000000486

[14] Laxenaire, M. C., Charpentier, С., & Feldman L. (1994). Anaphylactoid reaction to colloid plasma substitutes: inci–dence, risk factors, mechanisme. A French multicenter prospective study. Ann. Fr. Anesth. Reanim., 13(3), 301-310. PMID:7992937

[15] Ljunstrom, K. (2007). Colloid safety: fact and fiction. Ballieres Clin. Anaesthesiol. 11(1). 163-177. doi:

[16] Nalos, M., Kholodniak, E., Smith, L., Orde, S., Ting, I., Slama, M., … Huang, S. (2018). The comparative effects of 3% saline and 05M sodium lactate on cardiac function:a randomised, crossover study in volunteers. Critical Care and Resuscitation, 20(2), 124-130. PubMed PMID: 29852851

[17] Regas, F. C., & Ehrlich, H. P. (1992). Elucidating the vascular response to burns with a new rat model. J. Trauma, 32(5), 557-563. PMID:1588642

[18] Ring, J., & Messmer, K. (1977). Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet., 1(8009), 446-469. PMID:65572

[19] Williams, F. N., Herndon, D. N., Suman, O. E., Lee, J. O., Norbury, W. B., Branski, L. K., … Jeschke, M. G. (2011). Changes in cardiac physiology after severe burn injury. J. Burn Care Res., 32(2), 269–274. doi:10.1097/BCR.0b013e31820aafcf

[20] Xie, Q., Ye, Z., Chen, L., Zhao, C., Ruan, Q., & Xie, W. (2015). Expression of microRNA-126 in myocardial tissue of rats in the early stage of severe burn injury and its relation with myocardial damage. Chinese journal of burns, 31(5), 367-371. PMID:26714406

[21] Zhang, J. P., Ying, X., Liang, W. Y., Luo, Z. H., Yang, Z. C., Huang, Y. S., & Wang, W. C. (2008). Apoptosis in cardiac myocytes during the early stage after severe burn. J. Trauma, 65(2), 401-408. doi:10.1097/TA.0b013e31817cf732
How to Cite