Morphological features of radioiodine-resistance metastases of thyroid papillary carcinoma


  • A.V. Zelinskaya State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
Keywords: thyroid papillary carcinoma, fine-needle aspiration puncture biopsy, radioiodine-resistant metastasis, cytological characteristics, histological signs.

Abstract

An important problem in the diagnosis, treatment and prediction of papillary thyroid cancer is radioiodine-resistant metastases, early prediction of which is possible on the condition of determining their cytological and histological characteristics. The purpose of this work was to identify the histological and cytological characteristics of metastases of papillary thyroid carcinomas correlated with their iodine-accumulative capacity, on the basis of which it will be possible to predict the radio-resistance of papillary thyroid carcinomas. A cytological examination of punctates of 30 papillary carcinomas and 45 of their metastases identified in the postoperative period and analysis of the histological characteristics of 100 papillary carcinomas of the general population, 47 primary papillary carcinomas and their radio-resistant metastasis and 17 primary papillary carcinomas of patients with radioiodine-uptake metastases were conducted. Statistical analysis was performed via the non-parametric criterion χ2 in the package Statistica 11.0. It has been shown a statistically significant difference between presence of sign of follicular structures in the histological material of primary papillary canсer of patients with radioiodine-resistance metastases and between of primary papillary canсer of patients with radioiodine-uptake metastases and common population of papillary thyroid cancer. It has been shown a statistically significant difference between punctuates of radioiodine-resistance and radioiodine-uptake metastases in presence of such cytological characteristics as different subpopulations of thyrocytes. It has been shown that the cytological characteristics of radioiodine-resistant metastases differ from radioiodine-uptake metastases and primary papillary carcinomas by the presence of different subpopulations of thyrocytes, particular structures and oxyphilic changes. It is shown that such histological characteristics as lack of follicular structures in the material of primary papillary carcinomas correlate with radio-resistance and can be prognostic factors of its appearance.

References

[1] Almendro, V., Marusyk, A., & Polyak, K. (2013). Cellular heterogeneity and molecular evolution in cancer. Ann. Rev. Pathol., 8, 277-302 doi: 10.1146/annurev-pathol-020712-163923.

[2] Bätge, B., Dralle, H., Padberg, B., Bettina von Herbay, & Sören, Schröder. (1992). Histology and immunocytochemistry of differentiated thyroid carcinomas do not predict radioiodine uptake: A clinicomorphological study of 62 recurrent or metastatic tumours. Virchows Archiv A, 421, 6, 521-526.

[3] Bogdanova, T., Zurnadzhy, L., Nikiforov, Y., Leeman-Neill, R., Tronko, M., Chanock, S. … Brenner, A. (2015). Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. Br. J. Cancer., 113(11), 1556-1564. doi:10.1038/bjc.2015.3723.

[4] Brychtova, V., Valik, D., & Vojtesek, B. (2018). Variability in the solid cell population and its consequence for cancer and treatment. Klin. Oncol., 31(2), 255-2513. doi:10.14735/amko2018255.

[5] Busaidy, N., & Cabanillas, M. (2012). Differentiated Thyroid Cancer: Management of Patients with Radioiodine Nonresponsive Disease. J. Thyroid Research, 2, 1-12. http://dx.doi.org/10.1155/2012/618985.

[6] June-Key, Chung, & Gi Jeong, Cheon. (2014). Radioiodine Therapy in Differentiated Thyroid Cancer: The First Targeted Therapy in Oncology. Endocrinol. Metab. (Seoul), 29(3), 233-239. doi: 10.3803/EnM.2014.29.3.233.

[7] Dadu, R., Devine, C., Hernandez, M., Waguespack, S., Busaidy, N., Mimi, I. Hu. … Cabanillas, M. (2014). Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J. Clin. Endocrinol. Metab., 99, 2086-2094. doi: 10.1210/jc.2013-3588.

[8] Deandreis, D., Ghuzlan, A., Leboulleux, S., Lacroix, L., Garsi, J. P., Talbot, M. … Schlumberger, M. (2011). Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr. Relat. Cancer, 18(1), 159-169. doi: 10.1677/ERC-10-0233.

[9] Drozd, V.,. Branovan, I., Shiglik, N., Biko, J., & Reiners, C. (2018). Thyroid Cancer Induction: Nitrates as Independent Risk Factors or Risk Modulators after Radiation Exposure, with a Focus on the Chernobyl Acciden. Eur. Thyroid J., 7(2), 67-74. doi:10.1159/000485971.

[10] Dzepina, D., Zurak, K., Petric, V., & Cupic, H. (2014). Pathological characteristics and clinical perspectives of papillary thyroid cancer: study of 714 patients. Eur. Arch. Otorhinolarygol, 271(1), 141-148. doi: 10.1007/s00405-013-2472-6.

[11] Francis, Worden. (2014). Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther. Adv. Med. Oncol., 6(6), 267-279. doi: 12.1177/1758834014548188.

[12] Haugen, B., Alexander, E., Bible, K., Doherty, G., Mandel, S., Nikiforov, Y. … Wartofsky, L. (2016). 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26(1), 1-133. doi: 10.1089/thy.2015.0020.

[13] Ito, Y., Luster, M., Pitoia, F., Robinson, B., & Wirh, L. (2012). Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions. Expert Rev. Endocrinol. Metab., 7(5): 541-554. https://doi.org/10.1586/eem.12.36.

[14] Lei, S., Ding, Z., Ge, J., & Zhao D. (2015). Association between prognostic factors and clinical outcome of well-differentiated thyroid carcinoma: a retrospective 10-year follow-up study. Oncol. Lett, 10(3),1749-1754. https://doi.org/10.3892/ol.2015.3416.

[15] Markovina, S., Grigsby, P. W., Schwarz, J. K., DeWees, T., Moley, J. F., Barry, A. Siegel., & Perkins, S. M. (2014). Treatment approach, surveillance, and outcome of well-differentiated thyroid cancer in childhood and adolescence. Thyroid, 24(7), 1121-1126. doi: 10.1089/thy.2013.0297.

[16] Marusyka, A., & Polak, K. (2010). Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta, 1805(1),105-117.

[17] Mitsutake, N., Iwao, A., Nagai, K., Namba, H., Ohtsuru, A., Saenko, V., & Yamashita, S. (2007). Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology, 148(4), 1797-1803. doi: 10.1210/en.2006-1553.

[18] Le Pennec, S., Konopka, T., Gacquer, D., Fimereli, D., Tarabichi, M., Tomás G. … Maenhaut, C. (2015). Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer and matched metastases. Endocr. Relat. Cancer, 22(2), 205-216. doi: 10.1530/ERC-14-0351.

[19] Ricardo, R. Lastra, Virginia, A. LiVolsi, & Zubair, W. Baloch. (2014). Aggressive variants of follicular cell-derived thyroid carcinomas: A cytopathologist’s perspective. Cancer cytopathology, 122(7), 484-503. doi:10.1002/cncy.21417.

[20] Ricarte-Filho, J. C., Ryder, M., Chitale, D. A., Rivera, M., Heguy, A., Ladanyi, M. … Fagin J. A. (2009). Mutational Profile of Advanced Primary and Metastatic Radioactive Iodine-Refractory Thyroid Cancers Reveals Distinct Pathogenetic Roles for BRAF, PIK3CA, and AKT1. Cancer Res., 69(1), 4885. doi: 10.1158/0008-5472.CAN-09-0727.

[21] Rivera, M., Ghossein, R. A., Schoder, H., Gomez, D., Larson, S. M., & Tuttle, R. M. (2008). Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer, 113(1), 48-56. doi: 10.1002/cncr.23515.

[22] Studer, H., Gerber, H., Zbaeren, J., & Peter, H. J. (1992). Histomorphological and immunohistochemical evidence that human nodular goiters grow by episodic replication of multiple clusters of thyroid follicular cells. J. Clin. Endocrinol. Metab., 75(4), 1151-1158.

[23] Tron’ko, M., Kravchenko, V., Kvachenyuk, A. & Kaminsky, O. (2016). Chornobyl disaster and thyroid pathology. Health of Ukraine, 34(2):19-20.

[24] Vaisman, F., Carvalho, D., & Vaisman, M. (2015). A new appraisal of iodine refractory thyroid cancer. Endocrine-related cancer, 22(1), 301-310. doi:10.1530/ERC-15-0300.

[25] Wassermann, J., Bernier, M.-O., Spano, J.-Ph., Lepoutre-Lussey, Ch., Buffet, C., Simon, J.-M. … Leenhardt, L. (2016). Outcomes and Prognostic Factors in Radioiodine Refractory Differentiated Thyroid Carcinomas. The Oncologist, 21(1), 50-58. doi:10.1634/theoncologist.2015-0107.
Published
2019-02-28
How to Cite
Zelinskaya, A. (2019). Morphological features of radioiodine-resistance metastases of thyroid papillary carcinoma. Reports of Morphology, 25(1), 5-11. https://doi.org/https://doi.org/10.31393/morphology-journal-2019-25(1)-01