Morphofunctional changes in the lymphoid component of the rats prostate gland in conditions of immunostimulation


  • V.M. Evtushenko Zaporizhzhia State Medical University, Department of Histology, Cytology and Embryology, Zaporizhzhia, Ukraine
  • V.K. Syrtsov Zaporizhzhia State Medical University, Department of Histology, Cytology and Embryology, Zaporizhzhia, Ukraine
  • S.S. Popko Zaporizhzhia State Medical University, Department of Histology, Cytology and Embryology, Zaporizhzhia, Ukraine
Keywords: prostate gland, immunostimulation, lymphoid component.

Abstract

To date, the state of the local immune system of the human prostate gland is not sufficiently studied, which prevents in-depth study of sexual disorders and infertility in men, as well as its common diseases: hypertrophy, adenoma, cancer. In order to study the morphological state of the lymphoid apparatus of the prostate of rats on the background of immunostimulation, 60 rat prostate glands were studied by histological, morphometric and statistical methods. Using the methods of variation statistics, we assessed the correctness of the distribution of signs for each of the obtained variation series, the average values for each attribute that was studied, standard errors and standard deviations. The reliability of differences in values between independent micrometric values with a normal distribution of signs was determined by the Student’s criterion. The paper describes the patterns of formation of the local immune system of the prostate gland in the experiment after the introduction of immunoglobulin in adult male rats Wistar line. It was revealed that in rats after administration of immunoglobulin, the formation of lymphoid structures was observed three days earlier than in intact and control rats. First appear lymphoid formations in the stroma of the prostate gland, in the blood vessels – perivascular lymphoid nodules. By the end of the first week, lymphoid structures are formed in the glandular epithelium of the prostate gland – lymphoepithelial nodules. In lymphoid structures, the content of lymphocytes in all periods exceeds the benchmarks with the maximum changes on day 7 of the study. Reactive changes in the capillary endothelium in close relationship with the restructuring of lymphoid nodules during antigenic stimulation indicate that they are redundant in providing immune homeostasis. Thus, against the background of immunostimulation, changes occur in the local immune system of the prostate gland, manifested in an increase in the number of immunocompetent cells, the formation of lymphoid nodules, and are accompanied by corresponding changes in the hemomicrocirculatory bed.

References

1. Attard, G., Parker, C., Eeles, R. A., Schröder, F., Tomlins, S. A., Tannock, I. … de Bono, J. S. (2016). Prostate cancer. Lancet, 387, 70-82. https://doi.org/10.1016/S0140-6736(14)61947-4.

2. Brechka, H., McAuley, E. M., Lamperis, S. M., Paner, G. P., & Vander, Griend, D. J. (2016). Contribution of caudal Müllerian duct mesenchyme to prostate development. Stem Cells Dev. 25, 1733-1741. doi: 10.1089/scd.2016.0088.

3. Chen, M., Yeh, C.-R., Shyr, C.-R., Lin, H.-H., Da, J., & Yeh, S. (2012). Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor alpha knockout mice. Asian J. Androl. 14, 546-555. doi: 10.1038/aja.2011.181.

4. Choi, N., Zhang, B., Zhang, L., Ittmann, M., & Xin, L. (2012). Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell, 21, 253-265. doi: 10.1016/j.ccr.2012.01.005.

5. Chua, C. W., Shibata, M., Lei, M., Toivanen, R., Barlow, L. J., Bergren, S. K. … Shen, M. M. (2014). Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol., 16, 951-961. doi: 10.1038/ncb3047.

6. Corn, P. G., Wang, F., McKeehan, W. L. & Navone, N. (2013). Targeting fibroblast growth factor pathways in prostate cancer. Clin. Cancer Res., 19, 5856-5866. doi: 10.1158/1078-0432.CCR-13-1550.

7. DeGraff, D. J., Grabowska, M. M., Case, T. C., Yu, X., Herrick, M. K., Hayward, W. J. … Matusik, R. J. (2014). FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Lab. Invest., 94, 726-739. doi: 10.1038/labinvest.2014.64.

8. Ferraldeschi, R., Sharifi, N., Auchus, R. J., & Attard, G. (2013). Molecular pathways: Inhibiting steroid biosynthesis in prostate cancer. Clin. Cancer Res., 19, 3353-3359. doi: 10.1158/1078-0432.CCR-12-0931.

9. Gamat, M., Malinowski, R. L., Parkhurst, L. J., Steinke, L. M., & Marker, P. C. (2015). Ornithine decarboxylase activity is required for prostatic budding in the developing mouse prostate. PLoS ONE1. doi: e0139522 10.1371/journal.pone.0139522.

10. Gevaert, T., Lerut, E., Joniau, S., Franken, J., Roskams, T., & De Ridder, D. (2014). Characterization of subepithelial interstitial cells in normal and pathological human prostate. Histopathology, 65, 418-428. 10.1111/his.12402.

11. Grabowska, M. M., Elliott, A. D., DeGraff, D. J., Anderson, P. D., Anumanthan, G., Yamashita, H., … Matusik, R. J. (2014). NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression. Mol. Endocrinol., 28(6), 949-964. doi: 10.1210/me.2013-1213.

12. Höfner, T., Eisen, C., Klein, C., Rigo-Watermeier, T., Goeppinger, S. M., Jauch, A. … Trumpp, A. (2015). Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin. Stem Cell Reports, 4(3), 503-518. doi: 10.1016/j.stemcr.2015.01.015.

13. Ittmann, M., Huang, J., Radaelli, E., Martin, P., Signoretti, S., Sullivan, R. … Cardiff, R. D. (2013). Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res., 73(9), 2718-2736. doi: 10.1158/0008-5472.CAN-12-4213.

14. Karthaus, W. R., Iaquinta, P. J., Drost, J., Gracanin, A., van Boxtel, R., Wongvipat, J. … Clevers, H. C. (2014). Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 159(1), 163-175. doi: 10.1016/j.cell.2014.08.017.

15. Keil, K. P., Abler, L. L., Mehta, V., Altmann, H. M., Laporta, J., Plisch, E. H. … Vezina, C. M. (2014). DNA methylation of E-cadherin is a priming mechanism for prostate development. Dev. Biol., 387, 142-153. doi: 10.1016/j.ydbio.2014.01.020.

16. Kwon, O. J., & Xin, L. (2014). Prostate epithelial stem and progenitor cells. Am. J. Clin. Exp. Urol., 2, 209-218.

17. Kwon, O. J., Zhang, L., Ittmann, M. M. & Xin, L. (2014). Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc. Natl. Acad. Sci. USA 111, E592-E600. doi: 10.1073/pnas.1318157111.

18. Kwon, O.-J., Zhang, L., & Xin, L. (2016). Stem Cell Antigen-1 identifies a distinct androgen-independent murine prostatic luminal cell lineage with bipotent potential. Stem Cells, 34, 191-202. doi: 10.1002/stem.2217.

19. Lee, D.-K., Liu, Y., Liao, L., Wang, F., & Xu, J. (2014). The prostate basal cell (BC) heterogeneity and the p63-positive BC differentiation spectrum in mice. Int. J. Biol. Sci. 10, 1007-1017. doi: 10.7150/ijbs.9997.

20. Lee, S. H., Johnson, D. T., Luong, R., Yu, E. J., Cunha, G. R., Nusse, R. & Sun, Z. (2015). Wnt/beta-catenin-responsive cells in prostatic development and regeneration. Stem Cells, 33, 3356-3367. doi: 10.1002/stem.2096.

21. Luo, W., Rodriguez, M., Valdez, J. M., Zhu, X., Tan, K., Li, D., Siwko, S., Xin, L., & Liu, M. (2013). Lgr4 is a key regulator of prostate development and prostate stem cell differentiation. Stem Cells, 31, 2492-2505. doi: 10.1002/stem.1484.

22. Peng, Y.-C., Levine, C. M., Zahid, S., Wilson, E. L., & Joyner, A. L. (2013). Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proc. Natl. Acad. Sci. USA 110, 20611-20616. doi: 10.1073/pnas.1315729110.

23. Popko, S. S., & Yevtushenko, V. M. (2018). Features of the PSA Expression by human prostate gland structures. Morphologia, 12(3), 123-126. doi: https://doi.org/10.26641/1997-9665.2018.3.123-126

24. Syrcov, V. K. (2017). Ultrastructural features of the epithelial component of the human prostate gland in the prenatal period of ontogenesis. World of Med. and Biol., 2 (60), 153-156.

25. Shibata, M., & Shen, M. M. (2015). Stem cells in genetically-engineered mouse models of prostate cancer. Endocr. Relat. Cancer, 22, T199-T208. doi: 10.1530/ERC-15-0367.

26. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J. Clin., 66, 7-30. doi: 10.3322/caac.21332.

27. Szczyrba, J., Niesen, A., Wagner, M., Wandernoth, P. M., Aumüller, G., & Wennemuth, G. (2017). Neuroendocrine cells of the prostate derive from the neural crest. J. Biol. Chem., 292, 2021-2031. doi: 10.1074/jbc.M116.755082.

28. Trotsenko, B. V., & Luhyn, Y. A. (2009). Regional heterogeneity of mesenchyme in the processes of prostate gland morphogenesis in human and rat fetuses. Morphologia, III(3), 126-130.

29. Watson, P. A., Arora, V. K., & Sawyers, C. L. (2015). Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer, 15, 701-711. doi: 10.1038/nrc4016.
Published
2019-02-28
How to Cite
Evtushenko, V., Syrtsov, V., & Popko, S. (2019). Morphofunctional changes in the lymphoid component of the rats prostate gland in conditions of immunostimulation. Reports of Morphology, 25(1), 19-24. https://doi.org/https://doi.org/10.31393/morphology-journal-2019-25(1)-03