Features of microscopic changes in lung structure of young rats under conditions of hyperhomocysteinemia

  • І.А. Samborska National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: hyperhomocysteinemia, lungs, aerohematic barrier, macrophages, neutrophils.


Hyperhomocysteinemia is a risk factor for many diseases, including pathologies of the respiratory system. The pathogenesis of lung tissue damage is complex and multifactorial, however, it has now been found that homocysteine has a toxic effect on the vascular system and parenchyma of the organ. The purpose of the study is to identify the features of microscopic changes in the structure of the lungs of young rats under conditions of hyperhomocysteinemia. The experimental study was performed on 22 white non-linear young (1-2 months) male rats. During the experiment, the animals were divided into two groups – control and experimental. Simulation of persistent hyperhomocysteinemia was achieved by administering to rats of the experimental group thiolactone homocysteine at a dose of 200 mg/kg body weight intragastrically for 60 days. Histological specimens were examined using an SEO SCAN light microscope and photo-documented using a Vision CCD Camera with the system output images of histological preparations. It was found that the introduction of thiolactone homocysteine to young rats at a dose of 200 mg/kg led to the development of destructive changes in blood vessels, bronchi, components of the respiratory department with signs of atelectasis. Hemodynamic disorders and increased vascular permeability led to perivascular, peribronchial, interstitial, intra-alveolar edema, histo-leukocyte infiltration. The detected changes are reversible and have a compensatory nature.


[1] Bai, Y., Fang, F., Jiang, J., & Xu, F. (2017). Extrinsic Calcitonin Gene-Related Peptide Inhibits Hyperoxia-Induced Alveolar Epithelial Type II Cells Apoptosis, Oxidative Stress, and Reactive Oxygen Species (ROS) Production by Enhancing Notch1 and Homocysteine-Induced Endoplasmic Reticulum Protein (HERP) Expression. Med. Sci. Monit., 23, 5774-5782. doi: 10.12659/MSM.904549
[2] da Cuncha, A. A., Ferreira, A. G., da Cuncha, M. J., Pederzolli, C. D., Becker, D. L., Coelho, J. G. … Wyse, A. T. (2011). Chronic hyperhomocysteinemia induces oxidative damage in the rat lung. Mol. Cell. Biochem., 358(1-2), 153-160. doi: 10.1007/s11010-011-0930-2
[3] Dayal, S., Blokhin, I., Erger, R. A., Jensen, M., Arging, E., Stevens, J. W. … Lentz, S. R. (2014). Protective Vascular and Cardiac Effects of Inducible Nitric Oxide Synthase in Mice with Hyperhomocysteinemia. PLoS One, 9(9): e107734. doi: 10.1371/journal.pone.0107734
[4] Dionisio, N., Jardin, I., Salido, G. M., & Rosado, J. A. (2010). Homocysteine, Intracellular Signaling and Thrombotic Disorders. Curr. Med. Chem., 17(27), 3109-3119. doi: 10.2174/092986710791959783
[5] Durda, K, Kąklewski, K, Gupta, S, Szydłowski, M, Baszuk, P, Jaworska-Bieniek, K. … Jakubowska, A. (2017). Serum folate concentration and the incidence of lung cancer. PLoS One, 12(5): e0177441. doi: 10.1371/journal.pone.0177441
[6] Goralskiy, L. P., Homich, V. T., & Kononskiy, O. I. (2011). Fundamentals of histological technique and morphofunctional methods of research in normal and pathology. Zhytomyr: Polissya.
[7] Grechanina, O. Ya. (2013). Methionine – an essential amino acid. Clinical genetics and perinatal diagnostics, 1(2), 19-35.
[8] Hamelet, J., Maurin, N., Fulchiron, R., Delabar, J. M., & Janel, N. (2007). Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement. Exp. Mol. Pathol., 83(2), 249-253. doi: 10.1016/j.yexmp.2007.04.005
[9] Kaur, R., & Sekhon, B. S. (2013). Hyperhomocysteinemia: an overviews. International journal of comprehensive pharmacy, 5(1), 1-4.
[10] Liu, W. L., Liu, Z. W., Li, T. S., Wang, C., & Zhao, B. (2013). Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury. Clin. Med. J., 126(3), 494-499. PMID: 23422113
[11] Lutsyuk, M. B., Zaichko, N. V., Grigor’eva, G. S., Konahovich, M. A., Artemchuk, M. A., Pentyuk, N. O., & Postovіtenko, K. P. (2013). Hyperhomocysteinemia syndrome: causes, methods of prevention and treatment. Rational pharmacotherapy, 29(4), 55-60.
[12] Medvedev, D. V., Zvyagina, V. I., Uryasev, O. M., Belskih, E. S., Bulatetskiy, S. V., & Ryabkov, A. N. (2017). Metabolic changes in lung mitochondria in experimental hyperhomocysteinemia in rats. Biomedical Chemistry, 63(3), 248-254. doi: 10.18097/PBMC20176303248
[13] Pentyuk, О. О., Lutsyuk, M. B., & Artemchuk, M. A. (2007). Preclinical studies of hyperhomocysteinemic action of potential drugs. К.: SPC MoH Ukraine.
[14] Pushpakunar, S., Kundu, S. & Sen, U. (2014). Endothelial Dysfunction: The Link Between Homocysteine and Hydrogen Sulfide. Curr. Med. Chem., 21(32), 3662-3672. PMID: 25005183
[15] Prokofeva, T. V., Lipnitskaya, E. A., Kuzmichev, B. Yu., Polunina, O. S., Voronina, L. P., & Polunina, E. A. (2019). The effect of chronic obstructive pulmonary disease on the level of homocysteinemia and the condition of the coronary vessels in patients with myocardial infarction. Tuberculosis and lung diseases, 10(97), 12-18. doi: https://doi.org/10.21292/2075-1230-2019-97-10-12-18
[16] Skovierova, H., Vidomanova, E., Mahmood, S., Sopkova, J., Drgova, A., Cervenova, T. … Lehotsky, J. (2016). The molecular and cellular effect of homocysteine metabolism imbalance on human health. Intern. J. of Molecular Scien., 17, 1-18. doi: 10.3390/ijms17101733
[17] Starcher, B., & Hill, C. H. (2005). Elastin defects in the lungs of avian and murine models of homocysteinemia. Exp. Lung Res., 31(9-10), 873-885. doi: 10.1080/01902140600611629
[18] Tasatargil, A., Sadan, G., & Karasu, E. (2007). Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulm. Pharmacol. Ther., 20(3), 265-272. doi: 10.1016/j.pupt.2006.02.004
[19] Tastekin, D., Erturk, K., Bozbey, H. U., Olmuscelik, O., Kizitan, H., Tuna, S., & Tas, F. (2015). Plasma homocysteine, folate and vitamin B12 levels in patients with lung cancer. Exp. Oncol., 37(3), 218-222. PMID: 26422108
[20] Wang, H., Sun, Q., Zhou, Y., Zhang, H., Luo, C., Xu, J. …Wang, W. (2017). Nitration-mediated deficiency of cystathione β-synthase activity accelerates the progression of hyperhomocysteinemia. Free radical biology and medicine, 113, 519-529. doi: https://doi.org/10.1016/j.freeradbiomed.2017.10.389
[21] Zaichko, N. V. (2010). Homocysteine, cysteine, and hydrogen sulfide levels in blood plasma of patients with deep vein thrombosis: association with C677T polymorphism in methylenetetrahydrofolate reductase gene. Experimental and clinical physiology and biochemistry, (4), 35-41.
[22] Zaichko, N. V., Lutsyuk, M. B., & Grigor’eva, G. O. (2012). Hyperhomocysteinemia: medico-social and pharmacological aspects. Pharmaceutical courier, (9), 30-35.
How to Cite
SamborskaІ. (2019). Features of microscopic changes in lung structure of young rats under conditions of hyperhomocysteinemia. Reports of Morphology, 25(3), 5-9. https://doi.org/10.31393/morphology-journal-2019-25(3)-01