Structural changes of lymph nodes under high calorie diet and melatonin correction
Abstract
The article presents and analyzes data from an experimental study conducted on white rats in females and males of reproductive age. The purpose of the study to study the morphometric and histological changes in the parenchyma of the lymph nodes of rats under the high-calorie diet (HCD) and with the correction of melatonin. The study was performed on 80 white rats of reproductive age. Microanatomy of the structural components of lymph nodes of white rats under physiological norms was examined in 10 intact animals. Experimental animals are divided into 5 groups. Statistical processing of digital data was performed using “Excel” software and “STATISTICA 6.0” using the parametric method. Eight weeks after HCD, there was a significant decrease in the relative area of the cortical substance in the parenchyma of lymph nodes of white rats of males and females by 10.3 % and 8.3 %, respectively, and an increase in the relative area of the medullary substance by 16.1 % and 13.2 %, respectively, greater than the intact animal group parameter. Corticomedullary index (CMI) decreased by 22.9 % and 19.0 %. After six weeks of HCD and the next six weeks of standard vivarium diet and melatonin administration, the relative area of cortical substance in the parenchyma of lymph nodes of white rats in males and females was 2.0 % and 2.9 %, respectively, greater than the parameters of the intact group of animals. Accordingly, the relative area of the medullary substance is 3.1 % and 4.6 % less than the parameters of the intact group of animals. CMI in both male and male rats was 5.1 % and 7.6 %, respectively, greater than the intact animal group parameter. Under the conditions of melatonin correction, it was found that on the histological preparations of lymph nodes the vein and artery were full-blooded. Empty hemocapillaries with thickened wall are observed. In the paracortical region, the number of high endothelial capillary venules decreases. Thus, long-term administration of melatonin improves the morphometric parameters of the parenchyma of the lymph nodes of rats, restores the morphological structure of the organ.
References
[2] Aylamazyan, E. K., Evsyukova, I. I., & Yarmolinskaya, M. I. (2018). The role of melatonin in the development of gestational diabetes. Zhurnal akusherstva i zhenskih bolezney, 67(1), 85-91. doi: 10.17816/JOWD67.185-191
[3] Beltiukova, S. V. (2016). Determination of monosodium glutamate thin-layer chromatography method with detection fluorescent. Visnyk ONU. Khimiia, 57(1), 50-58.
[4] Cardinali, P., & Hardeland, R. (2017). Inflammaging, metabolic syndrome and melatonin: a call for treatment studies. Neuroendocrinology, 104(4), 382-397. doi: 10.1159/000446543
[5] Do Amaral, F. G., Andrade-Silva, J., Kuwabara, W., & Cipolla-Neto, J. (2019). New insights into the function of melatonin and its role in metabolic disturbances. Expert Review of Endocrinology & Metabolism, 14(4), 299-303. doi: 10.1080/17446651.2019.1631158
[6] El-Aziza, R., Naguiba, M., & Rashedb, L. (2018). Spleen size in patients with metabolic syndrome and its relation to metabolic and inflammatory parameters. The Egyptian Journal of Internal Medicine, 30, 78-82. doi: 10.4103/ejim.ejim_86_17
[7] Escobedo, N., & Oliver, G. (2017). The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity. Cell metabolism, 26(4), 598-609. doi: 10.1016/j.cmet.2017.07.020
[8] Favero, G., Franceschetti, L., Buffoli, B., Moghadasian, M. H., Reiter, R. J., Rodella, L. F., & Rezzani, R. (2017). Melatonin: protection against age-related cardiac pathology. Ageing Research Reviews, 35, 336-349. doi: 10.1016/j.arr.2016.11.007
[9] Fedecostante, M., Spannella, F., Giulietti, F., Espinosa, E, Dessì-Fulgheri, P., & Sarzani, R. (2015). Associations between body mass index, ambulatory blood pressure findings, and changes in cardiacstructure: relevance of pulse and nighttime pressures. J. Clin. Hypertens. (Greenwich), 17(2), 147-153. doi: 10.1111/jch.12463
[10] Ghada, M., Fard, А., Madi, N. M., & El-Saka, M. H. (2013). Effect of Melatonin on Obesity and Lipid Profile in High Fat-Fed Rats. Journal of American Science, 9(10), 61-67.
[11] Inoue, H., Kodani, E., Atarashi, H., Okumura K., Yamashita, T., & Origasa, H. (2016). Impact of Body Mass Index on the Prognosis of Japanese Patients with Non-Valvular Atrial Fibrillation. Am. J. Cardiol., 118(2), 215-221. doi: 10.1016/j.amjcard.2016.04.036
[12] Khaksar, M., Oryan, A., Sayyari, M., Rezabakhsh, A., & Rahbarghazi, R. (2017). Protective effects of melatonin on long-term administration of fluoxetine in rats. Experimental and toxicologic pathology. 69(8), 564-574. doi: 10.1016/j.etp.2017.05.002
[13] Magnuson, A. M., Regan, D. P., Fouts, J. K., Booth, A. D., Dow, S. W., & Foster, M. T. (2017). Diet-Induced Obesity Causes Visceral, But Not Subcutaneous, Lymph Node Hyperplasia via Increases in Specific Immune Cell Populations. Cell Prolif., 50(5). doi: 10.1111/cpr.12365
[14] Nitti, M. D., Hespe, G. E., Kataru, R. P., Nores, G. D., Savetsky, I. L., Torrisi, J. S., & Mehrara, B. J. (2016). Obesity‐induced lymphatic dysfunction is reversible with weight loss. J. Physiol., 594(23), 7073-7087. doi: 10.1113/JP273061
[15] Oliveira, E., Castro, S., Ayupe, C. M., Ambrósio, G. E., Souza, P. V., Macedo, C. G., & Ferreira, A. P. (2019). Obesity affects peripheral lymphoid organs immune response in murine asthma model. Immunology, 157(3), 268-279. doi: 10.1111/imm.13081
[16] Prado, N., Ferder, L., Manucha, W., & Diez, E. (2018). Anti-inflammatory effects of melatonin in obesity and hypertension. Curr. Hypertens. Rep., 20(5), 45. doi: 10.1007/s11906-018-0842-6
[17] Rahman, M. M., Kwon, H. S., Kim, M. J., Go, H. K., Oak, M. H., & Kim, D. H. (2017). Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. Biomedicine & pharmacotherapy, 92, 606-614. doi: 10.1016/j.biopha.2017.05.035
[18] Suami, H., & Scaglioni, M. F. (2017). Lymphatic Territories (Lymphosomes) in the Rat: an Anatomical Study for Future Lymphatic Research. Plast. Reconstr. Surg., 140(5):945-951. doi: 10.1097/PRS.0000000000003776
[19] Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N., & Fougerou, C. (2017). Melatonin: pharmacology, functions and therapeutic benefits. Current neuropharmacology. 15(3), 434-443. doi: 10.2174/1570159X14666161228122115
[20] Valko, O. O., & Holovatskyi, A. S. (2018). Changes in the cell squad of iliac lymph nodes of white rats in case of longterm influence of nalbufin. EUREKA: Health Sciences, 2, 8-16. doi: 10.21303/2504-5679.2018.00573
[21] Vareniuk, I., Shevchuk, N., Roslova, N., & Dzerzhynskyi M. (2019). Effect of morning and evening administration of melatonin on the condition of the mucous membrane and small intestine crypts in obese rats. Bulletin of Taras Shevchenko National University of Kyiv, 1, 50-53.
[22] Wan, H., Wu, S., Wang, J., Yang, Y., Zhu, J., Shao, X., … & Zhang, H. (2017). Body mass index and the risk of all-cause mortality among patients with nonvalvular atrial fibrillation: a multicenter prospective observational study in China. Eur. J. Clin. Nutr., 71(4), 494-499. doi: 10.1038/ejcn.2016.183
[23] Weitman, E. S., Aschen, S. Z., Farias-Eisner, G., Albano, N., Cuzzone, D. A., Ghanta, S., & Mehrara, B. J. (2013). Obesity Impairs Lymphatic Fluid Transport and Dendritic Cell Migration to Lymph Nodes. PLoS One. 8(8), 700-703. doi: 10.1371/journal.pone.0070703
[24] Zaichenko, H. V., Horchakova, N. O., Klymenko, O. V., Yakovleva, N. Iu., & Sinitsyna, O. S. (2019). Melatonin as a potential cardioprotector: an experimental clinical analysis of efficiency. Visnyk problem biolohii i medytsyny, 2, 1(150), 26-35. doi: 10.29254/2077-4214-2019-2-1-150-26-35

This work is licensed under a Creative Commons Attribution 4.0 International License.