Analysis of the dynamics of the structural changes development in the humerus of guinea pigs under modeling biomechanical disturbances

  • R.A. Sergienko Medical center “Modern orthopedics” SPE Firm “Rehabilitation”, Kyiv, Ukraine
  • S.S. Strafun GA “Institute of traumatology and orthopedics NAMS of Ukraine”, Kyiv, Ukraine
  • S.I. Savosko Bogomolets A.A. National Medical University, Kyiv, Ukraine
  • A.M. Makarenko Bogomolets A.A. National Medical University, Kyiv, Ukraine
Keywords: osteoarthrosis, humerus, topography, dynamics, lesion area.


Today, the role of the traumatic factor and inflammation in the development and progression of osteoarthrosis is generally recognized, but the available research results do not allow to establish the role of impaired biomechanics as a monofactor in the development of deforming ostearthrosis of the shoulder joint. Violation of the function of the bone and bone-cartilage elements of the joint, which is compensated by soft tissue formations, leads to overloads of the joints, upsets the normal balance of the load forces in the joint, creates abnormal biomechanics and the resulting pathological manifestations of deforming osteoarthrosis. The aim of the study is research of the dynamics of the disturbed biomechanics influence of the shoulder joint on the development of deformation osteoarthrosis and the features of the development of its structural changes. The experiments were conducted on guinea pigs weighing 380-420 grams at the age of 5 months. A model of surgical restriction of joint mobility was reproduced, which caused the formation of contracture. Using the methods of histology and scanning electron microscopy, we studied the relief of the articular surface, the topography of degenerative changes, and structural changes in the articular cartilage and subchondral bone. A statistical evaluation of the obtained data samples was carried out using Student t-test. The results were considered reliable at р<0.05. The results of an experimental study demonstrated a decrease in the thickness and structure of articular cartilage when modeling deforming osteoarthrosis and confirmed the hypothesis that pathological limitation of the mobility of the shoulder joint and violation of biomechanics is an independent factor in the formation of osteoarthrosis. After surgery on day 30, degenerative changes and their progression with the formation of contracture on day 90 of observation were found in the articular cartilage. The features of the development of articular surface degeneration, the dynamics of the pathological changes and topography, which can expand the understanding of the pathogenesis of the disease, were established. The loss of the superficial zone caused the progression of dystrophic changes in the articular cartilage and sclerosis of the subchondral bone at 60 and 90 days.


[1] Anderson, D. E., & Johnstone, B. (2017). Dynamic mechanical compression of chondrocytes for tissue engineering: A critical review. Frontiers in Bioengineering and Biotechnology, 5, 76. doi: 10.3389/fbioe.2017.00076
[2] Birrell, F., Howells, N., & Porcheret, M. (2011). Osteoarthritis: pathogenesis and prospects for treatment. Rep. Rheumatic. Dis., 10, 1-2. doi: 10.1177/2040622312462734
[3] Cooke, M. E., Lawless, B. M., Jones, S. W., & Grover, L. M. (2018). Matrix degradation in osteoarthritis primes the superficial region of cartilage for mechanical damage. Acta Biomaterialia, 78, 320-328. doi: 10.1016/j.actbio.2018.07.037
[4] Cope, P. J., Ourradi, K., Li, Y., & Sharif, M. (2019). Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis and Cartilage, 27(2), 230-239. doi: 10.1016/j.joca.2018.09.016
[5] Goldring, M. B., & Berenbaum, F. (2015). Emerging targets in osteoarthritis therapy. Current Opinion in Pharmacology, 22, 51-63. doi: 10.1016/j.coph.2015.03.004
[6] Guilak, F., Nims, R. J., Dicks, A., Wu, C. L., & Meulenbelt, I. (2018). Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biology, 71, 40-50. doi: 10.1016/j.matbio.2018.05.008
[7] Hall, A. C. (2019). The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Current Rheumatology Reports, 21(8), 38. doi: 10.1007/s11926-019-0837-6
[8] Hsu, H. C., Luo, Z. P., Stone, J. J., Huang, T. H., & An, K. N. (2003). Correlation between rotator cuff tear and glenohumeral degeneration. Acta Orthopaedica Scandinavica, 74(1), 89-94. doi: 10.1080/00016470310013725
[9] Kramer, E. J., Bodendorfer, B. M., Laron, D., Wong, J., Kim, H. T., Liu, X., & Feeley, B. T. (2013). Evaluation of cartilage degeneration in a rat model of rotator cuff tear arthropathy. Journal of Shoulder and Elbow Surgery, 22(12), 1702-1709. doi: 10.1016/j.jse.2013.03.014
[10] Krishnan, Y., & Grodzinsky, A. J. (2018). Cartilage diseases. Matrix Biology, 71, 51-69. doi: 10.1016/j.matbio.2018.05.005
[11] Lane, R. S., Fu, Y., Matsuzaki, S., Kinter, M., Humphries, K. M., & Griffin, T. M. (2015). Mitochondrial respiration and redox coupling in articular chondrocytes. Arthritis Research & Therapy, 17(1), 54. doi: 10.1186/s13075-015-0566-9.
[12] Liu, J., Dai, J., Wang, Y., Lai, S., & Wang, S. (2017). Significance of new blood vessels in the pathogenesis of temporomandibular joint osteoarthritis. Experimental and Therapeutic Medicine, 13(5), 2325-2331. doi: 10.3892/etm.2017.4234
[13] Mazor, M., Best, T. M., Cesaro, A., Lespessailles, E., & Toumi, H. (2019). Osteoarthritis biomarker responses and cartilage adaptation to exercise: A review of animal and human models. Scandinavian Journal of Medicine & Science in Sports, 29(8), 1072-1082. doi: 10.1111/sms.13435
[14] Miyaki, S., & Lotz, M. K. (2018). Extracellular vesicles in cartilage homeostasis and osteoarthritis. Current Opinion in Rheumatology, 30(1), 129. doi: 10.1097/BOR.0000000000000454
[15] Mobasheri, A., Matta, C., Zákány, R., & Musumeci, G. (2015). Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas, 80(3), 237-244. doi: 10.1016/j.maturitas.2014.12.003
[16] Paterson, S. I., Eltawil, N. M., Simpson, A. H. R. W., Amin, A. K., & Hall, A. C. (2016). Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone & Joint Research, 5(4), 137-144. doi: 10.1302/2046-3758.54.2000594
[17] Prieto-Alhambra, D., Judge, A., Javaid, M. K., Cooper, C., Diez-Perez, A., & Arden, N. K. (2014). Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Annals of the Rheumatic Diseases, 73(9), 1659-1664. doi: 10.1136/annrheumdis-2013-203355
[18] Reuther, K. E., Thomas, S. J., Tucker, J. J., Sarver, J. J., Gray Ch. F., Rooney, S. I., … Soslowsky, L. J. (2014). Disruption of the anterior-posterior rotator cuff force balance alters joint function and leads to joint damage in a rat model. Journal of Orthopaedic Research, 32(5), 638-644. doi: 10.1002/jor.22586
[19] Rosenthal, A. K. (2016). Articular cartilage vesicles and calcium crystal deposition diseases. Current Opinion in Rheumatology, 28(2), 127. doi: 10.1097/BOR.0000000000000244
[20] Sarkisov, D. S. & Perov, Yu. L. (Ed.) (1996). Microscopic Technique: Manual. M.: Medicine.
[21] Sears, B. W., Johnston, P. S., Ramsey, M. L., & Williams, G. R. (2012). Glenoid bone loss in primary total shoulder arthroplasty: evaluation and management. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 20(9), 604-613. doi: 10.5435/JAAOS-20-09-604
[22] Simon, T. M., & Jackson, D. W. (2018). Articular cartilage: injury pathways and treatment options. Sports Medicine and Arthroscopy Review, 26(1), 31-39. doi: 10.1097/JSA.0000000000000182
[23] Tkach, M., & Théry, C. (2016). Communication by extracellular vesicles: where we are and where we need to go. Cell, 164(6), 1226-1232. doi: 10.1016/j.cell.2016.01.043
[24] Van Den Berg, W. B. (2001). Lessons from animal models of osteoarthritis. Current Opinion in Rheumatology, 13(5), 452-456. doi: 10.1097/00002281-200109000-00019
[25] Van Der Kraan, P. M. (2017). The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nature Reviews Rheumatology, 13(3), 155. doi: 10.1038/nrrheum.2016.219
[26] Wang, C., Wang, X., Xu, X. L., Yuan, X. L., Gou, W. L., Wang, A. Y., ... & Lu, S. B. (2014). Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head. PloS-one, 9(5). doi: 10.1371/journal.pone.0096361
[27] Wang, W. J., Liu, F., Zhu, Y. W., Sun, M. H., Qiu, Y., & Weng, W. J. (2016). Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis: A radiographic study. Bone & Joint Research, 5(5), 198-205. doi: 10.1302/2046-3758.55.2000538
[28] Wang, X., Zhai, M., Zhao, Y., & Yin, J. (2018). A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann. Joint, 3(2), 9. doi: 10.21037/aoj.2018.01.04
[29] Zhang, S., Cao, W., Wei, K., Liu, X., Xu, Y., Yang, C., ... & Chen, W. (2013). Expression of VEGF-receptors in TMJ synovium of rabbits with experimentally induced internal derangement. British Journal of Oral and Maxillofacial Surgery, 51(1), 69-73. doi: 10.1016/j.bjoms.2012.01.014
How to Cite
Sergienko, R., Strafun, S., Savosko, S., & Makarenko, A. (2019). Analysis of the dynamics of the structural changes development in the humerus of guinea pigs under modeling biomechanical disturbances. Reports of Morphology, 25(3), 33-39.