Pathophysiological model of indirect revascularization in rats with microangiopathy of limbs caused by experimental streptozocin diabetes

  • R.S. Vastyanov Odessa National Medical University, Odessa, Ukraine
  • O.V. Chekhlova Odessa National Medical University, Odessa, Ukraine
Keywords: diabetes mellitus, diabetic angiopathy, Pentoxifylline, platelets rich plasma, streptozotocin, experimental model.


Despite the large number of publications, the model of experimental diabetes after the introduction of streptozotocin remains a subject of lively scientific debate. The purpose of this study was to develop a pathophysiological model of indirect revascularization in rats with microangiopathy of limbs caused by experimental streptozotocin diabetes. Experimental studies were carried out in a chronic experiment on 100 sexually mature Wistar rats weighing 180-250 g. The streptozotocin diabetes model used. After culling animals from increased resistance to pancreatotropic toxicity by the criterion of the absence of hyperglycemia, three experimental groups were formed: Group I (control) – rats with streptozotocin-induced angiopathy without treatment (n=10); II group – rats with streptozotocin-induced angiopathy treated with pentoxifylline (100 mg/kg IP for 10 days) for therapeutic purposes (n=25); III group – rats with streptozotocin-induced angiopathy, which together with the treatment were injected with platelet-rich plasma (in the right hind limb, once, with a volume of 0.2 ml, linearly, retrogradely, from two points) and pentoxifylline (100 mg/kg IP for 10 days) (n=25). The duration of the experiment was 110 days. We studied the level of glycemia, the state of microcirculation, and the degree of pathomorphological changes in the various study groups. Statistical processing was performed by non-parametric methods using software Statistica 10.0. The developed pathophysiological model of indirect revascularization with the introduction of pentoxifylline and plasma enriched with platelets in diabetic angiopathy is adequate to the needs of clinical physiology. It has been shown that the isolated administration of pentoxifylline is inferior to combined therapy by revascularizing activity. The results of the work may be an experimental justification for the feasibility of clinical application of the combination of pentoxifylline and platelets rich plasma in the treatment of diabetic angiopathy, as well as its use in prophylactic purposes in patients with diabetes mellitus.


[1] Agrawal, N. K., & Kant, S. (2014). Targeting inflammation in diabetes: Newer therapeutic options. World Journal of Diabetes, 5(5), 697-710. doi: 10.4239/wjd.v5.i5.697

[2] Ahmed, M., Reffat, S. A., Hassan, A., & Eskander, F. (2017). Platelet-rich plasma for the treatment of clean diabetic foot ulcers. Annals of Vascular Surgery, 38, 206-211. doi: 10.1016/j.avsg.2016.04.023

[3] Al-Awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., ... Varga, C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016, 9051426. doi: 10.1155/2016/9051426

[4] Barrett, E. J., Liu, Z., Khamaisi, M., King, G. L., Klein, R., Klein, B. E., ... Vinik, A. I. (2017). Diabetic microvascular disease: an endocrine society scientific statement. The Journal of Clinical Endocrinology & Metabolism, 102(12), 4343-4410. doi: 10.1210/jc.2017-01922

[5] Chyrkyn, A. A. (2002). Workshop on Biochemistry. Mn.: New knowledge.

[6] Elraiyah, T., Tsapas, A., Prutsky, G., Domecq, J. P., Hasan, R., Firwana, B., ... Steinkraus, L. W. (2016). A systematic review and meta-analysis of adjunctive therapies in diabetic foot ulcers. Journal of Vascular Surgery, 63(2), 46S-58S. doi: 10.1016/j.jvs.2015.10.007

[7] Fenske, R. J., Cadena, M. T., Harenda, Q. E., Wienkes, H. N., Carbajal, K., Schaid, M. D., ... Wisinski, J. (2017). The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice. Endocrinology, 158(6), 1645-1658. doi: 10.1210/en.2016-1700

[8] Furman, B. L. (2015). Streptozotocin induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70(1), 5-47. doi: 10.1002/0471141755.ph0547s70

[9] Germanyuk, T. A., Ivko, T. I., & Bobrytska, L. O. (2018). The study of the effectiveness of the combined therapy of diabetes mellitus based on the pharmacoeconomic analysis in Ukraine. Pharmacy Bulletin, (3), 49-53. doi: 10.24959/nphj.18.2214

[10] Heinonen, S. E., Genové, G., Bengtsson, E., Hübschle, T., Åkesson, L., Hiss, K., ... Gomez, M. F. (2015). Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. Journal of Diabetes Research, 2015, 404085.

[11] King, A., & Bowe, J. (2016). Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochemical Pharmacology, 99, 1-10. doi: 10.1016/j.bcp.2015.08.108

[12] King, A. J. (2012). The use of animal models in diabetes research. British Journal of Pharmacology, 166(3), 877-894. doi: 10.1111/j.1476-5381.2012.01911.

[13] Kopchak, O. V., Biloklytska, G. F., Rozdobudko, N. I., & Dieiev, V. A. (2017). A method of obtaining platelet-enriched plasma of venous blood. Patent 119951 U, Ukraine.

[14] Martinez-Zapata, M. J., Martí Carvajal, A. J., Solà, I., Expósito, J. A., Bolíbar, I., Rodríguez, L., ... Zaror, C. (2016). Autologous platelet rich plasma for treating chronic wounds. Cochrane Database of Systematic Reviews, (5), CD006899. doi: 10.1002/14651858.CD006899.pub3

[15] Mazo, V. K., Sidorova, Yu. S., Zorin, S. N., & Kochetkova, A. A. (2016). Streptozotocin models of diabetes mellitus. Problems of Nutrition, 85(4), 14-21.

[16] Mokhort, T. V. (2015). Chronic complications of diabetes mellitus: focus on pentoxifylline. Medical News, 4(247), 4-9.

[17] Pérez-Díaz, I. (2016). Diabetes mellitus. Gac Med Mex, 152(1), 50-55.

[18] Polsky, S., & Ellis, S. L. (2015). Obesity, insulin resistance, and type 1 diabetes mellitus. Current Opinion in Endocrinology, Diabetes and Obesity, 22(4), 277-282. doi: 10.1097/MED.0000000000000170

[19] Shved, M. I., Dudnik, A. P., & Zhulkevych, I. V. (1998). Pathogenetic aspects of formation of diabetic angiopathies. Bulletin of Scientific Researches, (1-2), 56-58.

[20] Tao, Z., Shi, A., & Zhao, J. (2015). Epidemiological perspectives of diabetes. Cell biochemistry and biophysics, 73(1), 181-185. doi: 10.1007/s12013-015-0598-4

[21] Vainshtein, S. G., Zhulkevich, I. V., Petropavlovskii, G. A., & Kotel’nikova, N. E. (1987). Protective properties of microcrystalline cellulose in rats with experimental diabetes. Bulletin of Experimental Biology and Medicine, 103(2), 186-188. PMID: 3028529

[22] Vaĭnsteĭn, S. G., Zhulkevich, I. V., Dubkin, M. S., & Cherno, N. K. (1987). Food fibers as modifiers of homeostasis in patients with diabetes mellitus. Therapeutic Archive, 59(11), 29-31.

[23] Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047-1053. doi: 10.2337/diacare.27.5.1047
How to Cite
Vastyanov, R., & Chekhlova, O. (2019). Pathophysiological model of indirect revascularization in rats with microangiopathy of limbs caused by experimental streptozocin diabetes. Reports of Morphology, 25(4), 24-29.