Morphological features of the wall of common bile duct under the conditions of experimental opioid exposure

  • L.R. Mateshuk-Vatseba Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • I.I. Hirniak Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • U.Y. Pidvalna Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
Keywords: мicrostructure, bile excretion pathways, white rat, Nalbuphine.


The morphological condition of the bile ducts remains one of the most important problems of modern medical science. In order to obtain an analgesic effect in patients with acute cholangitis, opioids are often used. However, information on the effectiveness of opioids in the treatment of pathological conditions of the bile ducts is contradictory. The rapidly progressive destruction of the intrahepatic bile ducts associated with the use of narcotic agents has been described. Further study of the effect of opioids on the structural organization of the common bile duct is relevant. In order to establish the morphological state of the common bile duct under conditions of long-term opioid exposure, a study was performed on 24 sexually mature white male rats, aged 3.5-5.0 months and weighing 180-200 g, which were injected intramuscularly with Nalbuphine for 6 weeks. The study material is represented by histological specimens of the common bile duct of white rats. The “Aver Media” computer system was used to photograph microspecimens. The “ImageJ” computer program was used to measure the diameter of the lumen and the wall thickness of the common bile duct. After 2 weeks of Nalbuphine administration to white rats, plethora of wall microvessels and a significant increase in the longitudinal diameter of the lumen of the common bile duct were observed. After 4 weeks of the experiment, the common bile duct was dilated, the transverse and longitudinal diameters of its lumen almost doubled, pathological changes in its wall had all the signs of inflammation. In the later stages of the experiment (introduction of Nalbuphine for 6 weeks), the pathological changes increased and manifested by destructuring the wall of the common bile duct, disorganization of cholangiocytes, thinning of the cell layer due to detachment of cholangiocytes, polymorphism of their nuclei, destruction of intercellular junctions, stratification of its own plate, vacuolar dystrophy of the muscular membrane “varicose” expansion of venules, significant smooth muscle hyperplasia of arterioles, the presence of perivascular lymphocytic infiltrates in the duct wall.


[1] Abshagen, K., König, M., Hoppe, A., Müller, I., Ebert, M., Weng, H. … Dooley, S. (2015). Pathobiochemical signatures of cholestatic liver disease in bile duct ligated mice. BMC Syst. Biology, 9, 83. doi: 10.1186/s12918-015-0229-0
[2] Burden, N., Kendrick, J., Knight, L., McGregor, V., Murphy, H., Punler, M., & van Wijk, H. (2017). Maximizing the success of bile duct cannulation studies in rats: recommendations for best practice. Lab. Anim., 51(5), 457-464. doi: 10.1177/0023677217698001
[3] Buturovic S. (2014). Iatrogenic Injury to the Common Bile. Duct. Med. Arch., 68(4), 291-293. doi: 10.5455/medarh.2014.68
[4] Carmody, I. C., Romano, J., Bohorquez, H., Bugeaud, E., Bruce, D. S., Cohen, A. J. … Loss, G. E. (2017). Novel Biliary Reconstruction Techniques During Liver Transplantation. Ochsner J., 17(1), 42-45. PMID: 28331447
[5] Cheng, Y., Xiong, X. Z., Zhou, R. X., Deng, Y. L., Jin, Y. W., Lu, J. … Cheng, N. S. (2016). Repair of a common bile duct defect with a decellularized ureteral graft. World J. Gastroenterol., 22(48), 10575-10583. doi: 10.3748/wjg.v22.i48.10575
[6] Cho, H. J., Jwa, H. J., Kim, K. S., Gang, D. Y., & Kim, J. Y. (2013). Urosodeoxycholic Acid Therapy in a Child with Trimethoprim-Sulfamethoxazole-induced Vanishing Bile Duct Syndrome. Pediatr. Gastroenterol. Hepatol. Nutr., 16(4), 273-278. doi: 10.5223/pghn.2013.16.4.273
[7] Chun, K. (2014). Recent classifications of the common bile duct injury. Korean J. Hepatobiliary Pancreat. Surg., 18(3), 69-72. doi: 10.14701/kjhbps.2014.18.3.69
[8] Dai, J., Wu, X. F., Yang, C., Li, H. J., Chen, Y. L., Liu, G.Z. … Li, N. (2015). Study of Relationship Between the Blood Supply of the Extrahepatic Bile Duct and Duct Supply Branches from Gastroduodenal Artery on Imaging and Anatomy. Chin. Med. J. (Engl), 128(3), 322-326. doi: 10.4103/0366-6999.150097
[9] Darkahi, B., Liljeholm, H., & Sandblom, G. (2016). Laparoscopic Common Bile Duct Exploration: 9-Years Experience from a Single Center. Front. Surg., 3, 23. doi: 10.3389/fsurg.2016.00023
[10] DeAngelis, C., Marietti, M., Bruno, M., Pellicano, R., & Rizzetto, M. (2015). Endoscopic ultrasound in common bile duct dilatation with normal liver enzymes. World J. Gastrointest. Endosc., 7(8), 799-805. doi: 10.4253/wjge.v7.i8.799
[11] Fahmy, S. R. (2015). Anti-fibrotic effect of Holothuria arenicola extract against bile duct ligation in rats. BMC Complement Altern. Med., 15, 14. doi: 10.1186/s12906-015-0533-7
[12] Farnia, M. R., Babaei, R., Shirani, F., Momeni, M., Hajimaghsoudi, M., Vahidi, E., & Saeedi, M. (2016). Analgesic effect of paracetamol combined with low-dose morphine versus morphine alone on patients with biliary colic:a double blind, randomized controlled trial. World J. Emerg. Med., 7(1), 25-29. doi: 10.5847/wjem.j.1920-8642.2016.01.004
[13] Fazeli Dehkordy, S., Fowler K. J., Wolfson, T., Igarashi, S., Lamas Costantino, C. P., Hooker, J. C. … Sirlin, C. B. (2018). Technical report: gadoxetate-disodium-enhanced 2D R2* mapping: a novel approach for assessing bile ducts in living donors. Abdom. Radiol. (NY), 43(7), 1656-1660. doi: 10.1007/s00261-017-1365-3
[14] Fenner, E. K., Boguniewicz, J., Tucker, R. M., Sokol, R. J., & Mack, C. L. (2014). High Dose IgG Therapy Mitigates Bile Duct Targeted Inflammation and Obstruction in a Mouse Model of Biliary. Atresia Pediatr. Res., 76(1), 72-80. doi: 10.1038/pr.2014.46
[15] Garrido, M., Escobar, C., Zamora, C., Rejas, C., Varas, J., Párraga, M. … Montedonico S. (2017). Bile duct ligature in young rats: A revisited animal model for biliary atresia. Eur. J. Histochem., 61:2803, 249-254. doi: 10.4081/ejh.2017.2803
[16] Giusto, M., Barberi, L., Di Sario, F., Rizzuto, E., Nicoletti, C., Ascenzi, F., Renzi, A. … Merli, M. (2017). Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride‐induced liver cirrhosis. Physiol. Rep., 5(7), 1-13. doi: 10.14814/phy2.13153
[17] Gudnason, H. O., & Björnsson, E. S. (2017). Secondary sclerosing cholangitis in critically ill patients:current perspectives. Clin. Exp. Gastroenterol., 10, 105-111. doi: 10.2147/CEG.S115518
[18] Hatano, R., Akiyama, K., Tamura, A., Hosogi, S., Marunaka, Y., Caplan, M. J. … Asano, S. (2015). Knockdown of Ezrin Causes Intrahepatic Cholestasis by the Dysregulation of Bile Fluidity in the Bile Duct Epithelium in Mice. Hepatology, 61(5), 1660-1671. doi: 10.1002/hep.27565
[19] Jiang, J., Wei, J., Wu, J., Gao, W., Li, Q., Jiang, K., & Miao, Y. (2016). Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model. Biomed. Res. Int., 2016, 1-14. doi: 10.1155/2016/7427246
[20] Kim, H. Y., Yang, H. K., Kim, S. H., & Park, J. H. (2014). Ibuprofen Associated Acute Vanishing Bile Duct Syndrome and Toxic Epidermal Necrolysis in an Infant. Yonsei Med. J., 55(3), 834-837. doi: 10.3349/ymj.2014.55.3.834
[21] Kubo, N., Harimoto, N., Shibuya, K., Ishii, N., Tsukagoshi, M., Igarashi, T. … Shirabe, K. (2018). Successful treatment of isolated bile leakage after hepatectomy combination therapy with percutaneous transhepatic portal embolization and bile duct ablation with ethanol: a case report. Surg. Case Rep., 4, 1-5. doi: 10.1186/s40792-018-0463-y
[22] Lee, S. S., Song, T. J., Joo, M., Park, D. H., Seo, D. W., Lee, S. K., & Kim, M. H. (2014). Histological Changes in the Bile Duct after Long-Term Placement of a Fully Covered Self- Expandable Metal Stent within a Common Bile Duct: A Canine Study. Clinical Endoscopy, 47(1), 84-93. doi: 10.5946/ce.2014.47.1.84
[23] Lewis, P. L., Su, J., Yan, M., Meng, F., Glaser, S. S., Alpini, G. D. … Shah, R. N. (2018). Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci. Rep., 8, 1-14. doi: 10.1038/s41598-018-30433-6
[24] Li, S. Q., Hua, Y. P., Shen, S. L., Hu, W. J., Peng, B. G., & Liang, L. J. (2015). Segmental Bile Duct-Targeted Liver Resection for Right-Sided Intrahepatic Stones. Medicine (Baltimore), 94(28), 1-7. doi: 10.1097/MD.0000000000001158
[25] Mateshuk-Vatseba, L., Kost, A., & Pidvalna, U. (2018). Effect of Narcotic Analgesics on the Ultrastructure of the Eyeball (Experimental Study). Journal of Morphological Sciences. Georg Thieme Verlag KG, 35(04), 251-254. Available from:
[26] Miethke, A. G., Zhang, W., Simmons, J., Taylor, A., Shi, T., Shanmukhappa, S. K. … Setchell, K. D. R. (2016). Pharmacological inhibition of ASBT changes bile composition and blocks progression of sclerosing cholangitis in mdr2 knockout mice. Hepatology, 63(2):512-523. doi: 10.1002/hep.27973
[27] Pokotylo, V. U. (2017). Peculiarities of myocardial ultrastructure of rats at the late terms of opioid intoxication. Deutscher Wissenschaftsherold, 6, 14-20.
[28] Sheen, J. M., Chen, Y. C., Hsu, M. H., Tain, Y. L., Huang, Y. H., Tiao, M. M. … Huang, Li-T. (2016). Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats. Int. J. Mol. Sci., 17(8), 1365. doi: 10.3390/ijms17081365
[29] Soleimanpour, H., Safari, S., Shahsavari, N. K., Sanaie, S., & Alavian, S. M. (2016). Opioid Drugs in Patients With Liver Disease: A Systematic Review. Hepat. Mon., 16(4), e32636. doi: 10.5812/hepatmon.32636
[30] Tag, C. G., Sauer-Lehnen, S., Weiskirchen, S., Borkham-Kamphorst, E., Tolba, R. H., Tacke, F., Weiskirchen, R. … (2015). Bile Duct Ligation in Mice:Induction of Inflammatory Liver Injury and Fibrosis by Obstructive Cholestasis. J. Vis. Exp., 96, 52438. doi: 10.3791/52438
[31] Tomizawa, M., Shinozaki, F., Hasegawa, R., Shirai, Y., Motoyoshi, Y., Sugiyama, T. … Ishige, N. (2017). Comparison of acute cholangitis with or without common bile duct dilatation. Exp. Ther. Med., 13(6), 3497-3502. doi: 10.3892/etm.2017.4401
[32] Van Thuy, T. T., Thuy, L. T., Yoshizato, K., & Kawada, N. (2017). Possible Involvement of Nitric Oxide in Enhanced Liver Injury and Fibrogenesis during Cholestasis in Cytoglobin-deficient Mice. Scientific Reports, 7(1), 41888, 1-14. doi: 10.1038/srep41888
[33] Xuan, R., Zhao, X., Hu, D., Jian, J., Wang, T., & Hu, C. (2015). Three-dimensional visualization of the microvasculature of bile duct ligation-induced liver fibrosis in rats by x-ray phase-contrast imaging computed tomography. Scientific Repots, 5(1), 11500. doi: 10.1038/srep11500
[34] Yang, Y. L, Zhang, C., Zhang, H. W., Wu, P., Ma, Y. F., Lin, M. J. … Zhao, M. (2015). Common bile duct injury by fibrin glue: Report of a rare complication. World J. Gastroenterol., 21(9), 2854-2857. doi: 10.3748/wjg.v21.i9.2854
[35] Zhen, Y. Z., Li, N. R., He, H. W., Zhao, S. S., Zhang, G. L., Hao, X. F., & Shao, R. G. (2015). Protective effect of bicyclol against bile duct ligation-induced hepatic fibrosis in rats. World J. Gastroenterol., 21(23), 7155-7164. doi: 10.3748/wjg.v21.i23.
How to Cite
Mateshuk-Vatseba, L., Hirniak, I., & Pidvalna, U. (2020). Morphological features of the wall of common bile duct under the conditions of experimental opioid exposure. Reports of Morphology, 26(2), 26-31.