Comparative characteristics of the manifestations of damage and reparative processes in the mucous membrane of the duodenum of rats under the conditions of skin burns and skin burns associated with diabetes

  • I.A. Tymoshenko Bogomolets National Medical University, Kyiv, Ukraine
  • L.M. Sokurenko Bogomolets National Medical University, Kyiv, Ukraine
  • A.Ya. Yanchyshyn Bogomolets National Medical University, Kyiv, Ukraine
  • V.A. Pastukhova National University of Ukraine on Physical Education and Sport, Kyiv, Ukraine
Keywords: duodenum, thermal trauma, diabetes.


Currently, severe thermal injury is becoming one of the most important problems of practical medicine. Diabetes is also recognized as another global medical and social challenge of our century. The emergency situation for the treatment and prevention of the consequences of these pathologies is a consequence of the lack of a reliable theoretical basis for solving specific clinical problems regarding the course of burns, diabetes and their complications. The aim of the study is to establish the patterns of structural changes in the mucous membrane of the duodenum after burn injury of the skin of rats under conditions of experimental diabetes mellitus. The study was performed on 63 laboratory white adult male rats weighing 180-210 g, which were divided into 3 groups: intact animals, rats with skin burns and rats with skin burns on the background of diabetes. The model of experimental diabetes mellitus was reproduced by administering Streptozotocin to rats intraperitoneally once at a dose of 50 mg/kg, pre-dissolved in 0.1 M citrate buffer solution (pH=4.5). The control of the development of hyperglycemia in the experimental groups was the level of glucose in the blood 24.24±0.79 mmol/l. In the control group this index was 8.03±0.4 mmol/l. Rats with skin burns revealed destructive manifestations, which are accompanied by an active inflammatory reaction and corresponding necrotic changes, while rats with skin burns on the background of diabetes mellitus pathological processes are not just “summed up”, but in some way adaptively modified with the involvement of stress mechanisms of the endoplasmic reticulum and associated autophagy.


[1] Anjaneyulu, M., & Ramarao, P. (2002). Studies on gastrointestinal tract functional changes in diabetic animals. Methods Find. Exp. Clin. Pharmacol., 24(2), 71-5.

[2] Azpiroz, F., & Malagelada, C. (2016). Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia, 59, 404.

[3] Damasceno, D. C., Netto, A. O., Iessi, I. L., Gallego, F. Q., Corvino, S. B., Dallaqua, B., …. Rudge, M. V. C. (2014). Streptozotocin-Induced Diabetes Models: Pathophysiological Mechanisms and Fetal Outcomes. BioMed. Research International., 2014, 1-11. doi: 10.1155/2014/819065

[4] Deitch, E. A. (1990). Intestinal permeability is increased in burn patients shortly after injury. Surgery, 107(4), 411-416. doi: 10.1002/bjs.1800770541

[5] El-Salhy, M. (2001). Gastrointestinal transit in nonobese diabetic mouse: An animal model of human diabetes Type 1. Journal of Diabetes and its Complications, 15(5), 277-284. doi: 10.1016/S1056-8727(01)00158-1

[6] El-Salhy, M. (2002). Gastrointestinal Transit in an Animal Model of Human Diabetes Type 2: Relationship to gut neuroendocrine peptide contents, 107(2), 101-110. doi: 10.3109/2000-1967-133

[7] Epstein, M. D., Tchervenkov, J. I., Alexander, J. W, Johnson, J. R., & Vester, J. V. (1991). Increased gut permeability following burn trauma. Arch. Surg., 126, 198-200. doi: 10.1001/arrchsurg/1991/01410260086012

[8] Evers, L. H. (2010). The biology of burn injury. Exp. Dermatol., 19(2), 9, 777-783. doi: 10. 1111/j.1600-0625.2010.01105.x

[9] Gotfried, J., Priest, S., & Schey, R. (2017). Diabetes and the small intestine. Curr. Treat. Options. Gastroenterol., 15(4), 490-507. doi: 10.1007/s11938-017-0155-x

[10] Goyal, S. N., Reddy, N. M., Patil, K. R., Nakhate, K. T., Ojha, S., Patil, C. R., & Agrawal, Y. O. (2016). Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact., 244, 49-63. doi: 10.1016/j.cbi.2015.11.032

[11] Khvorostinka, V. M., & Kryvonosova, O. M. (2009). Pathogenetic and therapeutic aspects of chronic diseases of the gastroduodenal system in patients with Diabetes Mellitus. Problems of endocrine pathology, 1, 18-24.

[12] Klymenko, M. O., & Netiukhailo, L. H. (2009). Burn disease (pathogenesis and treatment). Poltava.

[13] Kozinets, G. P., Slesarenko, S. V., & Povstianoi, N. E. (2004). Burn Intoxication. Pathogenesis, clinic, principles of treatment. K.: Phoenix.

[14] Krivonosova, E. M. (2006). Morphological and functional mucous layer condition of stomach and duodenum in patients with diabetes mellitus. The Journal of V.N.Karazin Kharkiv National University, series “Medicine”, 13(738), 35-39.

[15] Lopetuso, L. R., Scaldaferri, F., Bruno, G., Petito, V., Franceschi, F., & Gasbarrini, A. (2015). The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur. Rev. Med. Pharmacol. Sci., 19(6), 1068-1076.

[16] Lukashevych, P. Yu., Orlenko, V. L., & Tronko, M. D. (2017). Modern approaches to providing antidiabetic therapy to patients with diabetes in Ukraine. Endocrinology, 1(22), 45-51.

[17] Mankovskii, B. N. (2018). Diabetology today. Is there a breakthrough in treatment? Diabetes. Adiposity. Metabolic syndrome, 2, 39-44.

[18] Martusevich, A. K., Peretiagin, S. P., & Pogodin, I. E. (2009). Metabolic aspects of the pathogenesis of burn endotoxicosis. Pathological Physiology and Experimental Therapy, 1, 30-32.

[19] Radionova, T. O. (2017). Peculiarities of the course of diseases of the upper gastrointestinal tract in patients with type 2 diabetes mellitus. Actual problems of modern medicine, 17, 4(2), 207-210.

[20] Sah, S. P., Singh, B., Choudhary, S., & Kumar, A. (2016). Animal models of insulin resistance: A review. Pharmacol. Rep., 68(6), 1165-1177. doi: 10.1016/j.pharep.2016.07.010

[21] Scaldaferri F., Pizzoferrato, M., Gerardi, V., Lopetuso, L., & Gasbarrini, A. (2012). The gut barrier: new acquisitions and therapeutic approaches. J. Clin. Gastroenterol., 46, 12-17. doi: 10.1097/MCG.0b013e31826ae849

[22] Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 9(11), 799-809. doi: 10.1038/nri2653

[23] Zhao, J., Chen, P., & Gregersen, H. (2013). Changes of phasic and tonic smooth muscle function of jejunum in type 2 diabetic Goto-Kakizaki rats. World J. Diabetes, 4(6), 339-348. doi: 10.4239/wjd.v4.i6.339

[24] Zhao, J., Chen, P., & Gregersen, H. (2013). Stress-strain analysis of jejunal contractility in response to flow and ramp distension in type 2 diabetic GK rats: effect of carbachol stimulation. J. Biomech., 27, 46(14), 2469-2476. doi: 10.1016/j.jbiomech.2013.07.019

[25] Zhao, J., Chen, P., & Gregersen, H. (2015). Stress-strain analysis of contractility in the ileum in response to flow and ramp distension in streptozotocin-induced diabetic rats--association with advanced glycation end product formation. Journal of Biomechanics, 48(6), 1075-1083. doi: 10.1016/j.jbiomech.2015.01.027
How to Cite
Tymoshenko, I., Sokurenko, L., Yanchyshyn, A., & Pastukhova, V. (2020). Comparative characteristics of the manifestations of damage and reparative processes in the mucous membrane of the duodenum of rats under the conditions of skin burns and skin burns associated with diabetes. Reports of Morphology, 26(2), 39-44.