Use of azimuthal-invariant Mueller-matrix images of linear dichroism of histological sections of brain substance for diagnosis of hemorrhage genesis

  • M.S. Garazdiuk Bukovinian State Medical University, Chernivtsi, Ukraine
  • O.V. Dubolazov Institute of Physical, Technical and Computer Sciences of Chernivtsi National University named after Yu. Fedkovych, Chernivtsi, Ukraine
  • S.M. Malanchuk Municipal Non-Commercial Enterprise “City Children’s Polyclinic” Chernivtsi City Council, Chernivtsi, Ukraine
Keywords: hemorrhages of traumatic genesis, hemorrhages of non-traumatic genesis, ischemic cerebral infarction, Muller-matrix mapping.

Abstract

Differential diagnosis of the cause of death (CD) from ischemic cerebral infarction (ICI), hemorrhages of traumatic (HTG) and non-traumatic (HNG) genesis exclude the violent nature of death. The aim of our work was to develop forensic criteria for hemorrhage differentiation of traumatic and non-traumatic genesis and ICI by azimuthal-invariant Mueller-matrix images of linear dichroism of histological sections of brain substance (HBS). For the study were used native sections of HBS from 130 corpses in the case of: death from coronary heart disease – 40 of native sections (group 1 – control); HTG – 30 sections (group 2), ICI – 30 native sections (group 3), HNG – 30 native sections (group 4). Measuring the coordinate allocation meanings of parameters of polarization in the points of microscopic images was carried out at the location of the standard stokes-polarimeter. The effectiveness of intergroup differentiation of samples of deaths from traumatic hemorrhage and ischemic cerebral infarction reaches a satisfactory level and is 76-83%. Efficiency between group differentiation of samples of deaths from nontraumatic and traumatic hemorrhages reaches a satisfactory level and is 75-82%. As for differentiation between ischemic cerebral infarction and nontraumatic hemorrhages thise method is ineffective.

References

[1] Angelsky, O. V., Ushenko, Y. A., & Balanetska, V. O. (2011). The degree of mutual anisotropy of biological liquids polycrystalline nets as a parameter in diagnostics and differentiations of hominal inflammatory processes. Proc. SPIE 8338. In Tenth International Conference on Correlation Optics. 83380S. doi: 10.1117/12.920065
[2] Angelsky, O. V., Ushenko, A. G., Angelska, A. O., & Ushenko, Y. A. (2007). Polarization correlometry of polarization singularities of biological tissues object fields. Proc. SPIE 6616, Optical Measurement Systems for Industrial Inspection. 66160V. doi: 10.1117/12.725980
[3] Bachinskiy, V. T., Boichuk, T. M. & Ushenko, A. G. (2017). Laser polarimetry of biological tissues and fluids. LAP LAMBERT Academic Publishing.
[4] Bachynskyi, V. T., Hurov, O. M., Sarkisova, Yu. V., & Ushenko, O. H. (2017). Basic principles of morphological assessment of the state of biological tissues using laser polarimetric methods for solving forensic medicine problems. Clinical and experimental pathology, 16(1), 20-23.
[5] Garazdyuk, M., Savka, I., Tomka, Y., Soltys, I., Dubolazov, O., & Dvorjak, V. (2020). Azimuthally invariant Mueller-matrix microscopy in the differential diagnosis of cerebral infarction. In Optics and Photonics for Information Processing XIV (Vol. 11509, p. 115090T). International Society for Optics and Photonics. doi: 10.1117/12.2568436
[6] Glanc, S. (1999). Biomedical statistics. M.: Praktika.
[7] Finnie, J.W. (2016) Forensic Pathology of Traumatic Brain Injury. Vet. Pathol., 53(5), 962-978. doi: 10.1177/0300985815612155
[8] Hohlov, V. V. (2010). Forensic Medicine: A Guide. Smolensk.
[9] Konovalov, A. N., Lihtermana, L. B. & Potapova, A. A. (Ed.). (2001). Clinical Guide to Traumatic Brain Injury. M.: Antidor.
[10] Panzer, S., Covaliov, L., Augat, P. & Peschel, O. (2017) Traumatic brain injury: Comparison between autopsy and ante-mortem CT. J. Forensic Leg. Med., 52, 62-69. doi: 10.1016/j.jflm.2017.08.007
[11] Pavlyukovych, O. V. (2011). Determination of the age of death in some types of mechanical asphyxia and massive blood loss by laser polarimetry. Kyiv.
[12] Pigolkina, E. Ju., Dorosheva, Zh. V., Sidorovich, V. & Bychkov, A. A. (2012). Modern aspects of forensic diagnosis of traumatic brain injury. Forensic-medical examination, 55(1), 38-40.
[13] Ushenko, Y. A., Dubolazov, A. V., Karachevtsev, A. O., Sakhnovskiy, M. Y., Bizer, L. I., & Bodnar, O. B. (2014). Multidimensional Mueller matrices microscopy of biological crystal networks structure. In: 7th International Workshop on Advanced Optical Imaging and Metrology Fringe 2013. New York: Springer.
[14] Ushenko, A. G., Dubolazov, A. V., Ushenko, Y. A., Tomka, Y. Y., Karachevtsev, A. O., Sidor, M. I. & Prydiy, A. (2020). Differential diagnosis of the limitation of the formation of hemorrhages of traumatic origin, cerebral infarction, ischemic and hemorrhagic genesis by polarization-phase tomography. Proc. SPIE 0277-786X. In Fourteenth International Conference on Correlation Optics. 11369. doi: 10.1117/12.2553989
[15] Ushenko, A. G., Dubolazov, A. V., Ushenko, V. A., Ushenko, Y. A., Pidkamin, L. Y., Soltys, I. V. … Pavlyukovich, N. (2016). Mueller-matrix mapping of optically anisotropic fluorophores of molecular biological tissues in the diagnosis of death causes. Proceedings of SPIE - The International Society for Optical Engineering, 9971, №99712L.
[16] Ushenko, Y., Grytsyuk, M., Sakhnovskiy, M., Zhytaryuk, V., Slyotov, M., Soltys, I., & Motrich, A. (2020). Forensic medical evaluation of cerebral infarction of hemorrhagic formations of hemorrhages of traumatic genesis using polarization-phase tomography. In Fourteenth International Conference on Correlation Optics. 11369. doi: 10.1117/12.2553991
[17] Ushenko, V. A., Sdobnov, A. Y., Mishalov, W. D., Dubolazov, A. V., Olar, O. V., Bachinskyi, V. T. … Meglinski, I. (2019). Biomedical applications of Jones-matrix tomography to polycrystalline flms of biological fuids. Journal of Innovative Optical Health Sciences, 12(6), 1950017-1-13. doi: 10.1142/S1793545819500172
[18] Ushenko, Y. A., Trifonyuk, L. Y., Dubolazov, A. V., & Karachevtsev, A. O. (2014). Fourier-domain Jones-matrix mapping of a complex degree of mutual anisotropy in differentiation of biological tissues’ pathological states. Applied Optics, 53(10), B205-B214.
[19] Vanchulyak, O. Ya. (2016). Expert assessment of acute myocardial ischemia by polarization-correlation methods. Kyiv.
[20] Vanchulyak, O., Ushenko, Y., Galochkin, O., Sakhnovskiy, M., Kovalchuk, M., Dovgun, A., … Bodnar, G. (2019). Azimuthal fractalography of networks of biological crystals. Proceedings of SPIE - The International Society for Optical Engineering., 11105, №1110517.
[21] Vanchulyak, O., Ushenko, Y., Galochkin, O., Sakhnovskiy, M., Kovalchuk, M., Dovgun, A. ... Bodnar, G. (2019). Azimuthal fractalography of networks of biological crystals. Proceedings of SPIE, 11105, Novel Optical Systems, Methods, and Applications. XXII, 1110517. (doi: 10.1117/12.2529337)
[22] Vorlou, Ch. P., Dennis, M. S., & Gejn, Zh. (1998). Stroke. A practical guide to patient management. S.-Pb.: Politehnika.
[23] Walsh, K. B. (2019). Non-invasive sensor technology for prehospital stroke diagnosis: Current status and future directions. Int. J. Stroke. 14(6), 592-602. doi: 10.1177/1747493019866621
[24] Zasler, N. D. & Bender, S. D. (2019). Validity assessment in traumatic brain injury impairment and disability evaluations. Physical Medicine and Rehabilitation Clinics, 30(3), 621-636. doi: 10.1016/j.pmr.2019.03.009
Published
2020-10-12
How to Cite
Garazdiuk, M., Dubolazov, O., & Malanchuk, S. (2020). Use of azimuthal-invariant Mueller-matrix images of linear dichroism of histological sections of brain substance for diagnosis of hemorrhage genesis. Reports of Morphology, 26(2), 62-66. https://doi.org/10.31393/morphology-journal-2020-26(2)-09