Fractal dimension of phylogenetically different parts of the human cerebellum (magnetic resonance imaging study)

  • N.I. Maryenko Kharkiv National Medical University, Kharkiv, Ukraine
  • O.Yu. Stepanenko Kharkiv National Medical University, Kharkiv, Ukraine
Keywords: fractal analysis, cerebellum, magnetic resonance imaging.

Abstract

In recent years, fractal analysis has been increasingly used as a morphometric method, which allows to assess the complexity of the organization of quasi-fractal biological structures, including the cerebellum. The aim of the study was to determine the value of fractal dimension of phylogenetically different parts of the cerebellum by studying magnetic resonance imaging of the brain using the method of pixel dilation and to identify gender and age characteristics of individual variability of fractal dimension of the cerebellum and its external linear contour. The study was performed on the magnetic resonance images of the brain of 120 relatively healthy patients in age 18-86 years (65 women, 55 men). T2 weighted tomographic images were investigated. Fractal analysis was performed using the method of pixel dilation in the author’s modification. Fractal dimension (FD) values were determined for cerebellar tomographic images segmented with brightness values of 100 (FD100), 90 (FD90) and in the range of 100-90 (FD100-90 or fractal dimension of the outer cerebellar contour) in its upper and lower lobes, which include phylogenetically different zones. The obtained data were processed using generally accepted statistical methods. The average value of FD100 of the upper lobe of the cerebellum was 1.816±0.005, the lower lobe – 1.855±0.005. The average value of FD90 of the upper lobe of the cerebellum was 1.734±009, the lower lobe – 1.768±0.009. The average value of FD100-90 of the upper lobe of the cerebellum was 1.370±0.009, the lower lobe – 1.431±0.008. All three values of the fractal dimension of the lower lobe, which lobules have a lower phylogenetic age, are statistically significantly higher than the corresponding values of the fractal dimension of the upper lobe, have a more pronounced correlation with age than in the upper lobe. The developed research algorithm can be used to assess the condition of the cerebellum as an additional morphometric method during magnetic resonance imaging study of the brain.

References

[1] Akar, E., Kara, S., Akdemir, H., & Kırış, A. (2015). Fractal dimension analysis of cerebellum in Chiari Malformation type I. Computers in Biology and Medicine, 64, 179-186. https://doi.org/10.1016/j.compbiomed.2015.06.024
[2] Akar, E., Kara, S., Akdemir, H., & Kırış, A. (2017). 3D structural complexity analysis of cerebellum in Chiari malformation type I. Medical & Biological Engineering & Computing, 55(12), 2169-2182. https://doi.org/10.1007/s11517-017-1661-7
[3] Di Ieva, A., Esteban, F. J., Grizzi, F., Klonowski, W., & Martín-Landrove, M. (2015). Fractals in the neurosciences, Part II: clinical applications and future perspectives. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 21(1), 30-43. https://doi.org/10.1177/1073858413513928
[4] Di Ieva, A., Grizzi, F., Jelinek, H., Pellionisz, A. J., & Losa, G. A. (2014). Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 20(4), 403-417. https://doi.org/10.1177/1073858413513927
[5] Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. NeuroImage, 46(1), 39-46. https://doi.org/10.1016/j.neuroimage.2009.01.045
[6] Grizzi, F., Castello, A., Qehajaj, D., Russo, C., & Lopci, E. (2019). The Complexity and Fractal Geometry of Nuclear Medicine Images. Molecular Imaging and Biology, 21(3), 401-409. https://doi.org/10.1007/s11307-018-1236-5
[7] He, N., Langley, J., Huddleston, D. E., Ling, H., Xu, H., Liu, C. … Hu, X. P. (2017). Improved Neuroimaging Atlas of the Dentate Nucleus. Cerebellum, 16(5-6), 951-956. https://doi.org/10.1007/s12311-017-0872-7
[8] John, A. M., Elfanagely, O., Ayala, C. A., Cohen, M., & Prestigiacomo, C. J. (2015). The utility of fractal analysis in clinical neuroscience. Reviews in the Neurosciences, 26(6), 633-645. https://doi.org/10.1515/revneuro-2015-0011
[9] Lee, D. K., Yoon, U., Kwak, K., & Lee, J. M. (2015). Automated Segmentation of Cerebellum Using Brain Mask and Partial Volume Estimation Map. Computational and Mathematical Methods in Medicine, 167489. https://doi.org/10.1155/2015/167489
[10] Lehman, V. T., Black, D. F., DeLone, D. R., Blezek, D. J., Kaufmann, T. J., Brinjikji, W., & Welker, K. M. (2020). Current concepts of cross-sectional and functional anatomy of the cerebellum: a pictorial review and atlas. The British Journal of Radiology, 93(1106), 20190467. https://doi.org/10.1259/bjr.20190467
[11] Liu, J. Z., Zhang, L. D., & Yue, G. H. (2003). Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophysical Journal, 85(6), 4041-4046. https://doi.org/10.1016/S0006-3495(03)74817-6
[12] Liu, S., Fan, X., Zhang, C., Wang, Z., Li, S., Wang, Y. … Jiang, T. (2019). MR imaging based fractal analysis for differentiating primary CNS lymphoma and glioblastoma. European Radiology, 29(3), 1348-1354. https://doi.org/10.1007/s00330-018-5658-x
[13] Maryenko, N. I., & Stepanenko, O. Yu. (2019). Fractal analysis as a morphometric method in morphology: a pixel dilatation technique in the study of digital images of anatomical structures. Medicine Today and Tomorrow, 82(1), 8-14. https://doi.org/10.35339/msz.2019.82.01.02
[14] Park, M. T., Pipitone, J., Baer, L. H., Winterburn, J. L., Shah, Y., Chavez, S. … Chakravarty, M. M. (2014). Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. NeuroImage, 95, 217-231. https://doi.org/10.1016/j.neuroimage.2014.03.037
[15] Ristanović, D., & Milosević, N. T. (2012). Fractal analysis: methodologies for biomedical researchers. Theoretical Biology Forum, 105(2), 99-118.
[16] Smitha, K. A., Gupta, A. K., & Jayasree, R. S. (2015). Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Physics in Medicine and Biology, 60(17), 6937-6947. https://doi.org/10.1088/0031-9155/60/17/6937
[17] Stepanenko, A. Yu., & Maryenko, N. I. (2017). Fractal analysis of the human cerebellum white matter. World of Medicine and Biology, 61(3), 145-149. https://doi.org/10.26724/2079-8334-2017-3-61-145-149
[18] Stepanenko, A. Yu., & Maryenko, N. I. (2014). The variants of white matter branches structure of human cerebellum vermis. Bulletin of Problems in Biology and Medicine, 4(2), 259-264.
[19] Wu, Y. T., Shyu, K. K., Jao, C. W., Wang, Z. Y., Soong, B. W., Wu, H. M., & Wang, P. S. (2010). Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). NeuroImage, 49(1), 539-551. https://doi.org/10.1016/j.neuroimage.2009.07.042
[20] Zaletel, I., Ristanović, D., Stefanović, B. D., & Puškaš, N. (2015). Modified Richardson’s method versus the box-counting method in neuroscience. Journal of Neuroscience Methods, 242, 93-96. https://doi.org/10.1016/j.jneumeth.2015.01.013
[21] Zhang, L., Liu, J. Z., Dean, D., Sahgal, V., & Yue, G. H. (2006). A three-dimensional fractal analysis method for quantifying white matter structure in human brain. Journal of Neuroscience Methods, 150(2), 242-253. https://doi.org/10.1016/j.jneumeth.2005.06.021
Published
2020-10-12
How to Cite
Maryenko, N., & Stepanenko, O. (2020). Fractal dimension of phylogenetically different parts of the human cerebellum (magnetic resonance imaging study). Reports of Morphology, 26(2), 67-73. https://doi.org/10.31393/morphology-journal-2020-26(2)-10