Features of hemodynamics in the comorbid course of essential hypertension and type 2 diabetes in men, residents of Podillia, carriers of polymorphic variants of the brain natriuretic peptide gene

  • Ya.O. Antoniuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • Iu.P. Pashkova National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • A.F. Gumeniuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • O.O. Sakovych National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • V.M. Zhebel National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: essential hypertension, type 2 diabetes, the brain natriuretic peptide gene polymorphism, diastolic dysfunction.


Essential hypertension (EH) and type 2 diabetes (T2D) are important risk factors for the development of chronic heart failure (CHF). The early detection of CHF, especially under comorbidity, remains a challenge. To solve it in today’s conditions are used not only instrumental diagnostic methods (Echo-CG), but also the assessment of plasma levels of biomarker – brain natriuretic peptide (BNP), the expression of which is determined by the corresponding gene (locus T-381C) and may depend on its structural organization. It is proved that deregulation of the natriuretic peptide system (NP) is an important factor in the initiation and progression of myocardial dysfunction and energy imbalance, but the role of genetic preconditions for these disorders, including the peculiarities of polymorphic variants of the most physiologically significant gene is still not enough clear. The aim of the work was to investigate the presence of associations between indicators of systemic and intracardiac hemodynamic and the carrier of polymorphic variants of the BNP gene (T-381C) in men, residents of Podillia with the comorbid course of EH 2 and type 2 diabetes mellitus. We examined 132 middle-age men: 62 patients with EH 2 and chronic heart failure (CHF) 0-I functional classes (FC) according to NYHA Classification and 70 - with EH 2 combined with T2D and CHF FC I-II. Patients with EH 2 included in the first group and patients with EH 2 and T2D included in the second group of comparison. Parameters of intracardiac hemodynamics were determined on the basis of pulsed Doppler echocardiography. The genomic DNA of the BNP gene (T-381C) for the determination of its alleles was isolated by PCR. The mathematical processing was performed using the standard statistical package Statistica 10. We calculated the primary statistical indicators, identified differences between groups on statistical signs, performed correlation and discriminant analysis. The calculation of the relative risk with a 95% confidence interval was performed using an online calculator (https://medstatistic.ru/calculators/calcrisk.html). Among men living in Podillya with EH, both in the presence and absence of diabetes mellitus 2, the T381C genotype of the BNP gene (p>0.05) dominates. In the group of comorbid patients diastolic dysfunction of the left ventricle (DD LV) was diagnosed in 90% of people (n=63), while in the isolated course of EH it was found only in 43.55% (n=28). Although among homozygotes T381T BNP gene its symptoms were 100% (n=24), and among carriers of the C allele – in 84.78% (n=39) of patients. Carriers of the T381T genotype of the BNP gene dominated among persons with DD grade II: 41.66% against 10.87% of carriers of the C allele (p<0.05), while among persons with DD LV grade I there were more carriers of the C allele. Homozygous T381T genotype with EH 2 and T2D had a higher level of pulse blood pressure (p<0,01), a higher probability of developing eccentric left ventricular hypertrophy (p≤0.05) and more pronounced diastolic changes in the myocardium, as compared with carriers of the C allele and can be allocated to the priority group of observation for the organization of targeted measures aimed at preventing the development and progression of CHF.


[1] Al-Ibrahimi, Alaa S., Al-Gazally, Moaed E., & Monem, M. A. (2016). Effect of natriuretic peptides (BNP) gene T-381C polymorphism on the levels of BNP and NT-proBNP in patients with cardiovascular disease. International Journal of PharmTech Research, 12(9), 223–229. https://www.researchgate.net/publication/317540428
[2] Antoniuk, Ya. O., Humeniuk, A. F., Pashkova, Yu. P., Sakovych, O. O., & Zhebel, V. M. (2020). The diagnostic value of brain natriuretic peptide in men with comorbid essential arterial hypertension and type 2 diabetes mellitus. Zaporozhye Medical Journal, 22(5), 627–636. https://doi.org/10.14739/2310-1210.2020.5.214729
[3] Baldassarre, S., Fragapani, S., Panero, A., Fedele, D., Pinach, S., Lucchiari, M., Vitale, A. R., Mengozzi, G., Gruden, G., & Bruno, G. (2017). NTproBNP in insulin-resistance mediated conditions: overweight/obesity, metabolic syndrome and diabetes. The population-based Casale Monferrato Study. Cardiovascular Diabetology, 16(1). https://doi.org/10.1186/s12933-017-0601-z
[4] Berezikova, E. N., Mayanskaya, S. D., Garaeva, L. A., Shilov, S. N., Efremov, A. V., Teplyakov, A. T., … Torim, Y. Y. (2013). Brain natriuretic peptide gene polymorphism in patients with congestive heart failure. Kazan Medical Journal, 94(4), 433–438. https://doi.org/10.17816/kmj1944
[5] Berezin, A. E., & Berezin, A. A. (2020). Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification – A Narrative Review. Diabetes Therapy, 11(6), 1271–1291. https://doi.org/10.1007/s13300-020-00835-9
[6] Bilovol, O. M., Bobronnikova, L. R., & Al-Trawneh, O. V. (2017). Pathogenetic features of the combined course of arterial hypertension and diabetes mellitus 2 type. Eastern European Journal of Internal and Family Medicine, 1, 4–9. https://doi.org/10.15407/internalmed2017.01.004
[7] Brutsaert, E. F., Biggs, M. L., Delaney, J. A., Djoussé, L., Gottdiener, J. S., Ix, J. H. … Kizer, J. R. (2016). Longitudinal assessment of N-terminal pro-B-type natriuretic peptide and risk of diabetes in older adults: The cardiovascular health study. Metabolism, 65(10), 1489–1497. https://doi.org/10.1016/j.metabol.2016.06.002
[8] Cecelja, M., & Chowienczyk, P. (2016). Molecular Mechanisms of Arterial Stiffening. Pulse, 4(1), 43–48. https://doi.org/10.1159/000446399
[9] Cefalu, W. T., Bakris, G., Blonde, L., Boulton, A. J.M., D’Alessio, D., … Wong, T. Y. (2016). Standards of medical care in diabetes – 2016. Diabetes Care, 39(1), 1-109. https://care.diabetesjournals.org/content/suppl/2015/12/21/39.Suppl_1.DC2/2016-Standards-of-Care.pdf
[10] Clerico, A., Masotti, S., Musetti, V., & Passino, C. (2019). Pathophysiological mechanisms determining sex differences in circulating levels of cardiac natriuretic peptides and cardiac troponins. Journal of Laboratory and Precision Medicine, 4, 8-8. https://doi.org/10.21037/jlpm.2019.01.03
[11] Costello-Boerrigter, L. C., Boerrigter, G., Ameenuddin, S., Mahoney, D. W., Slusser, J. P., Heublein, D. M., … Burnett, J. C. (2011). The Effect of the Brain-Type Natriuretic Peptide Single-Nucleotide Polymorphism rs198389 on Test Characteristics of Common Assays. Mayo Clinic Proceedings, 86(3), 210–218. https://doi.org/10.4065/mcp.2010.0708
[12] Dauriz, M., Mantovani, A., Bonapace, S., Verlato, G., Zoppini, G., Bonora, E., & Targher, G. (2017). Prognostic Impact of Diabetes on Long-term Survival Outcomes in Patients With Heart Failure: A Meta-analysis. Diabetes Care, 40(11), 1597–1605. https://doi.org/10.2337/dc17-0697
[13] Dunlay, S. M., Givertz, M. M., Aguilar, D., Allen, L. A., Chan, M., Desai, A. S. … Piña, I. L. (2019). Type 2 Diabetes Mellitus and Heart Failure, A Scientific Statement From the American Heart Association and Heart Failure Society of America. Journal of Cardiac Failure, 25(8), 584–619. https://doi.org/10.1016/j.cardfail.2019.05.007
[14] Ellis, K. L., Newton-Cheh, C., Wang, T. J., Frampton, C. M., Doughty, R. N., Whalley, G. A. … Yandle, T. G. (2011). Association of genetic variation in the natriuretic peptide system with cardiovascular outcomes. Journal of Molecular and Cellular Cardiology, 50(4), 695–701. https://doi.org/10.1016/j.yjmcc.2011.01.010
[15] Kim, H.-L., Kim, M.-A., Choi, D.-J., Han, S., Jeon, E.-S., Cho, M.-C. … Ryu, K.-H. (2017). Gender Difference in the Prognostic Value of N-Terminal Pro-B Type Natriuretic Peptide in Patients With Heart Failure – A Report From the Korean Heart Failure Registry (KorHF). Circulation Journal, 81(9), 1329–1336. https://doi.org/10.1253/circj.cj-16-1345
[16] Klajda, M. D., Scott, C. G., Rodeheffer, R. J., & Chen, H. H. (2020). Diabetes Mellitus Is an Independent Predictor for the Development of Heart Failure. Mayo Clinic Proceedings, 95(1), 124–133. https://doi.org/10.1016/j.mayocp.2019.07.008
[17] Komkov, D. S., & Dragomiretskaya, N. A. (2017). Genetic aspects of chronic heart failure. Review. On-Line Scientific & Educational Bulletin “Health & Education Millennium”, 19(10), 46–54. https://doi.org/10.26787/nydha-2226-7417-2017-19-10-46-54
[18] Kovalenko, V. M., Sychov, O. S., Dolzhenko, M. M., Ivaniv, Yu. A., Deiak, S. I., Potashev, S. V., & Nosenko, N. M. (2016). Recommendations for echocardiographic evaluation of left ventricular diastolic function. The recommendations of the working group of functional diagnostics Association’s of Cardiologists of Ukraine and the Ukrainian Association of Echocardiography [Internet]. Kyiv. http://amosovinstitute.org.ua/wp-content/uploads/2018/11/Rekomendatsiyi-diastola.pdf
[19] Krzesiński, P., Piechota, W., Piotrowicz, K., Gielerak, G., & Woźniak-Kosek, A. (2019). Association of Estimated Insulin Resistance with N-Terminal B-Type Natriuretic Peptide Concentration in Men with Metabolic Syndrome. Cardiology Research and Practice, 1–6. https://doi.org/10.1155/2019/8571795
[20] Macheret, F., Heublein, D., Costello-Boerrigter, L. C., Boerrigter, G., McKie, P., Bellavia, D. … Cataliotti, A. (2012). Human Hypertension Is Characterized by a Lack of Activation of the Antihypertensive Cardiac Hormones ANP and BNP. Journal of the American College of Cardiology, 60(16), 1558–1565. https://doi.org/10.1016/j.jacc.2012.05.049
[21] Mueller, C., McDonald, K., de Boer, R. A., Maisel, A., Cleland, J. G. F., Kozhuharov, N. … Januzzi, J. L. (2019). Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. European Journal of Heart Failure, 21(6), 715–731. https://doi.org/10.1002/ejhf.1494
[22] Nicholson, K., Makovski, T. T., Griffith, L. E., Raina, P., Stranges, S., & van den Akker, M. (2019). Multimorbidity and comorbidity revisited: refining the concepts for international health research. Journal of Clinical Epidemiology, 105, 142–146. https://doi.org/10.1016/j.jclinepi.2018.09.008
[23] Ofstad, A. P., Atar, D., Gullestad, L., Langslet, G., & Johansen, O. E. (2018). The heart failure burden of type 2 diabetes mellitus – a review of pathophysiology and interventions. Heart Failure Reviews, 23(3), 303–323. https://doi.org/10.1007/s10741-018-9685-0
[24] Oganov, R. G., Denisov, I. N., Simanenkov, V. I., Bakulin, I. G., Bakulina, N. V., Boldueva, S. A., … Shalnova, S. A. (2017). Comorbidities in practice. Clinical guidelines. Cardiovascular Therapy and Prevention, 16(6), 5–56. https://doi.org/10.15829/1728-8800-2017-6-5-56
[25] Pashkova, I. P., Zhebel, V. M., Palahniuk, H. O., Antoniyk, Ya.O., & Syvak, V. G. (2018). Hereditary factors in the regulation of blood pressure as a factor of Chronic heart failure on the background of Essential Hypertension: new realities and prospects. Practitioner, 1, 16-20. https://plr.com.ua/index.php/journal/article/view/4/3
[26] Pashkova, І. P., Zhebel, V. M., Palahniuk, H. O., Sakovych, O. O., Starzhynska, O. L., Gumenyuk, A. F. … Zhebel, N. V. (2015). The BNP gene polymorphism as a regulator of brain natriuretic peptide plasma level in men with uncomplicated essential hypertension and left ventricular hypertrophy. Biological Markers and Guided Therapy, 2, 13–23. https://doi.org/10.12988/bmgt.2015.5101
[27] Pashkovа, Yu. P., Palahniuk, H. O., & Zhebel, V. M. (2016). Structural and functional indicators of myocardium in men citizens of Podillia region in Ukraine with Essential Hypertension stage II carriers of different variants of the brain natriuretic peptide gene. Bulletin of Vinnytsia National Medical University, 20, 1(2), 165–171. https://reports-vnmedical.com.ua/index.php/journal/article/view/331
[28] Pfister, R., Luben, R. N., Khaw, K.-T., & Wareham, N. J. (2013). Common genetic variants of the natriuretic peptide gene locus are not associated with heart failure risk in participants in the EPIC-Norfolk study. European Journal of Heart Failure, 15(6), 624–627. https://doi.org/10.1093/eurjhf/hft007
[29] Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S. … van der Meer, P. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 37(27), 2129–2200. https://doi.org/10.1093/eurheartj/ehw128
[30] Rørth, R., Jhund, P. S., Kristensen, S. L., Desai, A. S., Køber, L., Rouleau, J. L. … McMurray, J. J. V. (2018). The prognostic value of troponin T and N‐terminal pro B‐type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. European Journal of Heart Failure, 21, 40-49. https://doi.org/10.1002/ejhf.1359
[31] Seferovic, P. M., Ponikowski, P., Anker, S. D., Bauersachs, J., Chioncel, O., Cleland, J. G. F. … Coats, A. J. S. (2019). Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 21(10), 1169–1186. https://doi.org/10.1002/ejhf.1531
[32] Sobhani, K., Nieves Castro, D. K., Fu, Q., Gottlieb, R. A., Van Eyk, J. E., & Noel Bairey Merz, C. (2018). Sex differences in ischemic heart disease and heart failure biomarkers. Biology of Sex Differences, 9(1). https://doi.org/10.1186/s13293-018-0201-y
[33] Tanase, D. M., Radu, S., Al Shurbaji, S., Baroi, G. L., Florida Costea, C., Turliuc, M. D. … Floria, M. (2019). Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications. International Journal of Molecular Sciences, 20(11), 2629. https://doi.org/10.3390/ijms20112629
[34] Unified clinical protocol of primary and secondary (specialized) medical care “Type 2 diabetes mellitus” (order of the Ministry of Health 21.12.2012 №1118)]. (2012). 115 p. https://zakon.rada.gov.ua/rada/show/v1118282-12#Text
[35] Vinnakota, S., & Chen, H. H. (2020). The Importance of Natriuretic Peptides in Cardiometabolic Diseases. Journal of the Endocrine Society, 4(6). https://doi.org/10.1210/jendso/bvaa052
[36] Voronkov, L. G., Berezin, O. E., Zharinova, V. Yu., Zhebel, V. M., Koval, O. A., Rudyk, Yu. S. … Tseluiko, V. Y. (2019). Biological markers and their use in heart failure. Consensus of Ukrainian Association of Cardiology, Ukrainian Heart Failure Association and Ukrainian Association on Acute Cardiovascular Care. Ukrainian Journal of Cardiology, 26(2), 11-22. http://doi.org/10.31928/1608-635X-2019.2.1122
[37] Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., … Brady, A. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal, 39(33), 3021–3104. https://doi.org/10.1093/eurheartj/ehy339
[38] Wu, Z., Xu, M., Sheng, H., Lou, Y., Su, X., Chen, Y. … Jin, W. (2014). Association of natriuretic peptide polymorphisms with left ventricular dysfunction in southern Han Chinese coronary artery disease patients. Int. J. Clin. Exp. Pathol., 7, 7148–7157. https://pubmed.ncbi.nlm.nih.gov/25400811/
[39] Zois, N. E., Bartels, E. D., Hunter, I., Kousholt, B. S., Olsen, L. H., & Goetze, J. P. (2014). Natriuretic peptides in cardiometabolic regulation and disease. Nature Reviews Cardiology, 11, 403–412. https://doi.org/10.1038/nrcardio.2014.64
How to Cite
Antoniuk, Y., Pashkova, I., Gumeniuk, A., Sakovych, O., & Zhebel, V. (2020). Features of hemodynamics in the comorbid course of essential hypertension and type 2 diabetes in men, residents of Podillia, carriers of polymorphic variants of the brain natriuretic peptide gene. Reports of Morphology, 26(3), 5-13. https://doi.org/10.31393/morphology-journal-2020-26(3)-01