General craniometric characteristics of linear parameters of the middle cranial fossa of a mature person

  • I.V. Chekanova Kharkiv National Medical University, Kharkiv, Ukraine
  • O.Yu. Vovk Kharkiv National Medical University, Kharkiv, Ukraine
  • V.B. Ikramov Kharkiv National Medical University, Kharkiv, Ukraine
  • S.O. Dubina Donetsk National Medical University, Kramatorsk, Ukraine
Keywords: craniometry, mature age, internal base of the skull, middle cranial fossa.


Given the rapid development of neurology, neurosurgery, otolaryngology and forensic medicine, there is a need for new, updated morphological data of internal base of the skull, in particular middle cranial fossa. This is due to the complex bone architecture of the middle cranial fossa and the location of important neurovascular structures in this area, which are important for surgeons not to damage during the operation. In this regard, it is necessary to detail the features of the structure, shape, position and size of the middle cranial fossa. The aim of the work is a detailed morphological and craniometric study of the linear parameters of the middle cranial fossa of a mature person depending on gender. The study was performed by studying 50 CT scans of the head and 50 bone preparations of the skulls of men and women of mature age. In our study, a detailed morphometry of longitudinal and latitudinal parameters at different levels of the middle cranial fossa, as well as determining its depth and area. Morphometry of linear parameters of the studied area of the skull showed the presence of a range of variability in length, width and depth depending on the sex of a mature person. The study showed an increase in the longitudinal size of the middle cranial fossa from the lateral to the medial; the transverse dimensions of the middle cranial fossa take on smaller values in its anterior parts and gradually increase to the posterior ones, which in our opinion is due to the characteristic shape of this part of the skull. The performed morphometry of longitudinal and latitudinal parameters, depth and area of the middle cranial fossa showed that these parameters are predominant in males in contrast to females, which is due to the slightly increased head size in this group of adult’s people. Depth of the middle cranial fossa has the smallest range of variability depending on sex. It is established that right-handed asymmetry is more often observed in mature people of both sexes. Rarely, left-sided asymmetry is determined due to an increase in the length of the lateral sections in mature men. The data obtained make it possible to expand knowledge about the structure of the middle cranial fossa and can serve as a basis for further research.


[1] Aleshkina, O. U., Anisimov, A. N., Bukreeva, E. G., & Khurchak, U. A. (2011). Interrelationship of middle cranial fossa parameters and dimensional characteristics of human cerebral cranium in various craniotypes. Saratov Journal of Medical Scientific Research, 7(4), 757-760.
[2] Alzhrani, G., Shelton, C., & Coudwell, W. T. (2017). Middle fossa approach for resection of vestibular shwannoma. Acta Neurochir (Wien), 159(6), 1023-1026. doi: 10.1007/s00701-017-3169-1
[3] Artemieva, V. I. (1971). Morphology and topometry of the lateral parts of the middle cranial fossa in children. Proceedings of the Saratov Medical Institute, 92, 31-39.
[4] Azab, W. A., Almanabri, M., & Yosef, W. (2017). Endoscopic treatment of middle fossa arachnoid cysts. Acta Neurochir (Wien), 159(12), 2313-2317. doi: 10.1007/s00701-017-3320-z
[5] Bekelis, K., Moses, Z., Missios, S., Saunders, J., & Erkmen, K. (2012). Middle cranial fossa approach: pathologies and complications. J. Neurol. Surg. B., 73, A209. doi: 10.1055/s-0032-1312257
[6] Cherkasov, V. G., & Kravchuk, S. Yu. (2018). Anatomy of man. Vinnytsia: Nova Knyha.
[7] Doronina, G. A., Gayvoronsky, A. I., & Sherbak, A. U. (2003). Cranioscopic characteristic interernal base of skull adult people. SPb.
[8] Erbagci, H., Kizilkan, N., Sirikci, A., Yigiter, R., & Aksamoglu, M. (2010). Computed tomography based measurement of the dimensions of foramen ovale and rotundum in trigeminal neuralgia. Neurosciences (Riyadh, Saudi Arabia), 15(2), 101-104.
[9] Huang, B., Yao, M., Feng, Z., Guo, J., Zereshki, A., Leong, M., & Qian, X. (2014). CT-guided percutaneous infrazygomatic radiofrequency neurolysis through foramen rotundum to treat V2 trigeminal neuralgia. Pain medicine (Malden, Mass.), 15(8), 1418-1428.
[10] Johanis, M., Yang, I., & Gopen, Q. (2018). Incidence of intraoperative hearing loss during middle cranial fossa approach for repair of superior semicircular canal dehiscence. J. Clin. Neurosci., 54, 109-112. doi: 10.1016/j.jocn.2018.06.023
[11] Kosty, J. A., Stevens, S. M., Gozal, Y. M., DiNapoli, V. A., Patel, S. K., Golub, J. S. … Samy, R. N. (2019). Middle Fossa Approach for Resection of Vestibular Schwannomas: A Decade of Experience. Operative Neurosurgery, 16(2), 147-158.
[12] Koveshnikov, V. G. (1959). Materials for the surgical anatomy of the middle cranial fossa. Saratov Medical University, 24, 149-158.
[13] Lang, J., & Götzfried, H. P. (1982). On the practical-medical mean distances of the fossa cranialis media. Anatomischer Anzeiger, 151(5), 433-453.
[14] Lipschitz, N., Kohlberg, G. D., Zuccarello, M., & Samy, R. N. (2018). Comprehensive review of the extended middle cranial fossa approach. Curr. Opin. Otolaryngol. Head Neck Surg., 26(5), 286-292. doi: 10.1097/MOO.0000000000000471
[15] Lyunkova, R. N., & Krylov, V. V. (2015). The skull base triangles. Part 1. Russian Journal of Neurosurgery, 3, 54-61.
[16] Lyun’Kova, R. N., & Krylov, V. V. (2015). The skull base triangles (Part 2). Russian J. of Neurosurgery, 4, 64-70.
[17] Maina, R., Ducati, A., & Lanzino, G. (2007). The middle cranial fossa: morphometric study and surgical considerations. Skull Base, 17(6), 395-403. doi: 10.1055/s-2007-991117
[18] Makhambayev, G. D., Kauynbekova, Sh. М., & Akhanov, G. Zh. (2013). Minimum invasive accesses at surgery of the basis of the lobby and average cranial pole. Herald of Almaty State Institute of Advanced Medical Education. 1, 25-26.
[19] Matsukawa, H., Fujii, M., Murakata, A., Shinoda, M., & Takahashi, O. (2015). Foramen spinosum and middle meningeal artery in moyamoya disease: Preliminary results of a pilot study. Brain Injury, 29(10), 1246-1251.
[20] Peng, K. A., Lecovic, G. P., & Wilkinson, E. P. (2018). Pearls for the middle fossa approach in acoustic neuroma surgery. Curr. Opin. Otolaryngol. Head Neck. Surg., 26(5), 276-279. doi: 10.1097/moo.0000000000000479
[21] Raheja, A., Bowers, C. A., MacDonald, J. D., Shelton, C., Gurgel, R. K., Brimley, C., & Couldwell, W. T. (2016). Middle Fossa Approach for Vestibular Schwannoma: Good Hearing and Facial Nerve Outcomes with Low Morbidity. World Neurosurgery, 92, 37-46.
[22] Scheich, M., Ehrmann-Müller, D., Shehata-Dieler, W., & Hagen, R. (2017) Hearing results after middle fossa removal of small (T1/T2) vestibular schwannomas. HNO, 65(9), 751-757. doi: 10.1007/s00106-016-0228-5
[23] Sönmez, S., Şahin, B., Polat, B., Çomoğlu, Ş., & Orhan, K. S. (2017). Repair of Tegmen Tympani Defect Presenting with Spontaneous Cerebrospinal Fluid Otorrhea Using the Middle Cranial Fossa Approach. The Journal of International Advanced Otology, 13(3), 430-433.
[24] Tripathi, M., Deo, R.C., Suri, A., Srivastav, V., Baby, B., Kumar, S. … Lalwani, S. (2015). Quantitative analysis of the Kawase versus the modified Dolenc-Kawase approach for middle cranial fossa lesions with variable anteroposterior extension. J. Neurosurg., 123(1), 14-22. doi: 10.3171/2015.2.JNS132876
[25] Vovk, Yu. N. (2010). Clinical Anatomy of the Head. Lugansk: Elton-2.
[26] Xue, T., Yang, W., Guo, Y., Yuan, W., Dai, J., & Zhao, Z. (2015). 3D Image-Guided Percutaneous Radiofrequency Thermocoagulation of the Maxillary Branch of the Trigeminal Nerve Through Foramen Rotundum for the Treatment of Trigeminal Neuralgia. Medicine, 94(45), 19-54.
How to Cite
Chekanova, I., Vovk, O., Ikramov, V., & Dubina, S. (2020). General craniometric characteristics of linear parameters of the middle cranial fossa of a mature person. Reports of Morphology, 26(4), 55-61.