Morphological changes in the ventilated lung after thoracic surgery

  • A.V. Sydiuk SI “National Institute of Surgery and Transplantology named after O.O. Shalimov” NAMS of Ukraine
  • O.Ye. Sydiuk SI “National Institute of Surgery and Transplantology named after O.O. Shalimov” NAMS of Ukraine
  • V.O. Kropelnytskyi SI “National Institute of Surgery and Transplantology named after O.O. Shalimov” NAMS of Ukraine
  • A.S. Klimas SI “National Institute of Surgery and Transplantology named after O.O. Shalimov” NAMS of Ukraine
Keywords: lung morphology, single lung ventilation.

Abstract

There are many studies of single lung ventilation (SLV), which are mostly limited to reducing lung damage by changing ventilation strategies or comparing differences in lung damage caused by different lung isolation devices. There is no study comparing the morphological changes of ventilated lungs using different strategies of artificial lung ventilation. The aim of the study was to examine pathomorphological changes in the ventilated lung during thoracic surgery using SLV. A randomized study was performed on 40 patients who underwent thoracic surgery using SLV. After signing the informed consent, the patients were divided into two groups. In the control group (40 patients) with ventilation “by volume” (VCV), in the study group – ventilation “by pressure” (PCV) with the addition of PEEP 5 mm. During surgery in the thoracic cavity with the help of SLV performed transbronchial biopsy of the parenchyma of the ventilated lung to study the pathomorphological changes after ventilation with different modes. The biopsy was performed using a bronchoscope, which was inserted through the endotracheal tube into the lung, opposite the side of the operation (after the end of SLV and “inclusion” of the collapsed lung). The morphological changes caused by the ventilator were investigated. Pathomorphological examination of the non-collapsed lung (which participated in gas exchange during SLV) was as follows: the control group found significant changes in the alveolar wall with its edema, thickening of the interstitial lung, vascular occlusion, severe inflammatory cell infiltration and damage to alveolar structures. The alveoli collapsed and disappeared. The alveolar structures of the study group were better than the control group: pulmonary interstitial and alveolar exudates, as well as inflammatory cell infiltration were significantly reduced compared to those in the control group. The results of the study suggest that the use of PCV with “moderate” PEEP can significantly improve oxygenation and reduce acute ventilatory injury of the lungs compared to VCV during SLV.

References

[1] Ahmed, L.A., El-Maraghy, S.A., & Rizk, S.M. (2015). Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats. Sci. Rep., 5, 14-43. https://doi.org/10.1038/srep14043
[2] Arnal, J.M., Paquet, J., Wysocki, M., Demory, D., Donati, S., Granier, I. … Durand-Gasselin, J. (2011). Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med., 37, 1588-1594. doi: 10.1007/s00134-011-2323-0
[3] Ary Serpa Neto, Cardoso, S.O., Manetta, J.A., Pereira, V.G.M., Esposito D.C., Pasqualucci, de O. Prado M. … Schultz, M.J. (2012). Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: A meta-analysis. JAMA, 308(16), 1651-1659. doi: 10.1001/jama.2012.13730
[4] Bernasconi, F., & Piccioni, F. (2017). One-lung ventilation for thoracic surgery: Current perspectives. Tumori, 103(6), 495-503. doi: 10.5301/tj.5000638
[5] Cheng, Y.J., Chan, K.C., Chien, C.T., Sun, W.Z., & Lin, C.J. (2006). Oxidative stress during 1-lung ventilation. J. Thorac. Cardiovasc. Surg., 132, 513-518. doi: 10.1016/j.jtcvs.2006.03.060
[6] Clayton-Smith, A., Bennett, K., Alston, R.P., Adams, G., Brown, G., Hawthorne, T. … Tan, J. (2015). A comparison of the efficacy and adverse effects of double-lumen endobronchial tubes and bronchial blockers in thoracic surgery: A systematic review and meta-analysis of randomized controlled trials. J. Cardiothorac. Vasc. Anesth., 29, 955-966. doi: 10.1053/j.jvca.2014.11.017
[7] Ding, N., Wang, F., Xiao, H., Xu, L., & She, S. (2013). Mechanical ventilation enhances HMGB1 expression in an LPS-induced lung injury model. PLoS One, 8(9), e74633. https://doi.org/10.1371/journal.pone.0074633
[8] Falzon, D., Alston, R.P., Coley, E., & Montgomery, K. (2017). Lung isolation for thoracic surgery: From inception to evidence-based. J. Cardiothorac. Vasc. Anesth., 31, 678-693. doi: 10.1053/j.jvca.2016.05.032
[9] Gajic, O., Dara, S.I., Mendez, J.L., Adesanya, A.O., Festic, E., Caples, S.M. … Hubmayr, R.D. (2004). Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit. Care Med., 32, 1817-1824. doi: 10.1097/01.ccm.0000133019.52531.30
[10] García-de-la-Asunción, J., García-del-Olmo, E., Perez-Griera, J., Martí, F., Galan, G., Morcillo, A. … Belda, J. (2015). Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: A study of exhaled breath condensate and blood. Eur. J. Cardiothorac. Surg., 48, e37-e44, doi: 10.1093/ejcts/ezv207
[11] Helenius, I.T., Dada, L.A., & Sznajder, J.I. (2010). Role of ubiquitination in Na,K-ATPase regulation during lung injury. Proc. Am. Thorac. Soc., 7, 65-70. doi: 10.1513/pats.200907-082JS
[12] Ishikawa, S., & Lohser, J. (2011). One-lung ventilation and arterial oxygenation. Curr. Opin. Anaesthesiol., 24, 24-31, 2011. doi: 10.1097/ACO.0b013e3283415659
[13] Jeon, K., Yoon, J.W., Suh, G.Y., Kim, J., Kim, K., Yang, M. … Shim, Y.M. (2009). Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth. Intensive Care, 37, 14-19. doi: 10.1177/0310057X0903700110
[14] Jin, Y., Zhao, X., Li, H., Wang, Z., & Wang, D. (2013). Effects of Sevoflurane and Propofol on the inflammatory response and pulmonary function of perioperative patients with one-lung ventilation. Exp. Ther. Med., 6, 781-785. doi: 10.3892/etm.2013.1194
[15] Karzai, W., & Schwarzkopf, K. (2009). Hypoxemia during one-lung ventilation: Prediction, prevention, and treatment. Anesthesiology, 110(6), 1402-1411. doi: 10.1097/ALN.0b013e31819fb15d
[16] Lee, S.M., Kim, W.H., Ahn, H.J., Kim, J.A., Yang, M.K., Lee, C.H. … Choi, J.W. (2013). The effects of prolonged inspiratory time during one‑lung ventilation: A randomised controlled trial. Anaesthesia, 68, 908-916. doi: 10.1111/anae.12318
[17] Licker, M., Fauconnet, P., Villiger, Y., & Tschopp, J.M. (2009). Acute lung injury and outcomes after thoracic surgery. Curr. Opin. Anaesthesiol., 22(1), 61-67. doi: 10.1097/ACO.0b013e32831b466c
[18] Lohser, J., & Slinger, P. (2015). Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth. Analg., 121, 302-318. doi: 10.1213/ANE.0000000000000808
[19] Nieman, G.F., Satalin, J., Andrews, P., Aiash, H., Habashi, N.M., & Gatto, L.A. (2017). Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med. Exp., 5(8). doi: 10.1186/s40635-017-0121-x
[20] Riva, D.R., Contador, R.S., Baez-Garcia, C.S., Xisto, D.G., Cagido, V.R., Martini, S.V. … Zin, W.A. (2009). Recruitment maneuver: RAMP versus CPAP pressure profile in a model of acute lung injury. Respir. Physiol. Neurobiol., 169, 62-68. doi: 10.1016/j.resp.2009.08.010
[21] Roz, H., Lafargue, M., & Ouattara, A. (2011). Case scenario: Management of intraoperative hypoxemia during one-lung ventilation. Anesthesiology, 114, 167-174. doi: 10.1097/ALN.0b013e3182023ed3
[22] Rzezinski, A.F., Oliveira, G.P., Santiago, V.R., Santos, R.S., Ornellas, D.S., Morales, M.M. … Rocco, P.R. (2009). Prolonged recruitment manoeuvre improves lung function with less ultrastructural damage in experimental mild acute lung injury. Respir. Physiol. Neurobiol., 169, 271-281. doi: 10.1016/j.resp.2009.10.002
[23] Seo, J.H., Cho, C.W., Hong, D.M., Jeon, Y., & Bahk, J.H. (2016). The effects of thermal softening of double-lumen endobronchial tubes on postoperative sore throat, hoarseness and vocal cord injuries: A prospective double-blind randomized trial. Br. J. Anaesth., 116(2), 282-288. doi: 10.1093/bja/aev414
[24] Shiva, S., Sack, M.N., Greer, J.J., Duranski, M., Ringwood, L.A., Burwell, L. … Gladwin, M.T. (2007). Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med., 204(9), 2089-2102. doi: 10.1084/jem.20070198
[25] Silva, P.L., Moraes, L., Santos, R.S., Samary, C., Ornellas, D.S., Maron-Gutierrez, T. … Rocco, R.M.P. (2011). Impact of pressure profile and duration of recruitment maneuvers on morphofunctional and biochemical variables in experimental lung injury. Crit. Care Med., 39(5), 1074-1081. doi: 10.1097/CCM.0b013e318206d69a
[26] Sinclair, S.E., Kregenow, D.A., Lamm, W.J., Starr, I.R., Chi, E.Y., & Hlastala, M.P. (2002). Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am. J. Respir. Crit. Care Med., 166, 403-408. doi: 10.1164/rccm.200112-117OC
[27] Tusman, G., Bohm S.H., Warner, D.O., & Sprung, J. (2012). Atelectasis and perioperative pulmonary complications in high-risk patients. Curr. Opin. Anaesthesiol., 25, 1-10. doi: 10.1097/ACO.0b013e32834dd1eb
Published
2021-06-25
How to Cite
Sydiuk, A., Sydiuk, O., Kropelnytskyi, V., & Klimas, A. (2021). Morphological changes in the ventilated lung after thoracic surgery. Reports of Morphology, 27(2), 11-15. https://doi.org/10.31393/morphology-journal-2021-27(2)-02