Regression models of teleroentgenograhic indicators of the position of teeth and the profile of face soft tissues in juvenile aged persons with different face types according to Schwarz A.M.
Abstract
Considering the differences in the values of teleroentgenograhic (TRG) indicators in different racial, gender, ethnic, age, population, geographical population groups and numerical methods of TRG analysis, determination of normative values of cephalometric, gnatometric TRG-indicators, their interdependencies in the population of different countries is extremely important both for human anatomy and for the practice of dentists. This fully applies to residents of Ukraine of different age groups. The aim of the work is to develop and analyze regression models of teleroentgenograhic indicators of tooth position and facial soft tissue profile according to Schwarz A.M. in Ukrainian young men and young women with different facial types. Lateral teleroentgenograms of 49 young men (aged 17 to 21 years) and 76 young women (aged 16 to 20 years) with physiological occlusion as close as possible to orthognathic were analyzed. In the license package “Statistica 6.0” regression models of indicators of position of teeth and profile of soft tissues of the face according to the method of Schwarz A.M. depending on basic cephalometric and gnatometric indicators separately for boys and for girls with different types of the face are constructed. In young men, 16 of the 24 possible reliable regression models were constructed, in which the coefficient of determination is greater than 0.6 (R2=from 0.609 to 0.998). For young men with 1st (back face type) and 3rd (front face type) face types, the following models were created with respect to 5 indicators from 8 possible (respectively, angles Max1-SpP S-arz, distances Sn-Pn and Pog’-Por, angles Gl’LsPog’ and SnPog’-Pn; R2 = from 0.609 to 0.998 and angles Max1-SpP S-arz and Mand1-MP Schwars, distances Sn-Pn and Pog’-Por, angle Gl’LsPog’; R2 = from 0.609 to 0.946), and for young men with 2nd face types (average face type according to Schwarz AM) – for 6 indicators (angles Max1-SpP S-arz and Mand1-MP Schwars, distances Sn-Pn and Pog’-Por, angles Gl’LsPog’and SnPog’-Pn; R2 = from 0.690 to 0.990). In young women, 17 of the 24 possible reliable models with R2 greater than 0.6 (R2 = 0.628 to 0.958) were constructed. For young women with 1st type of face 6 indicators are modeled – angles Max1-SpP S-arz, distances Sn-Pn and Pog’-Por, angles Gl’LsPog’and SnPog’-Pn, the distance of Li-SnPog’(R2= from 0.663 to 0.958). For young women with 2nd face type, the following models were created for 7 indicators – angles Max1-SpP S-arz and Mand1-MP Schwars, distances Sn-Pn and Pog’-Por, angles Gl’LsPog’ and SnPog’-Pn, distances Li-SnPog’(R2= from 0.628 to 0.891). For young women with 3rd face type the smallest number of models with R2 larger than 0.6 was built, compared to all groups of persons with different face types – only 4 models for Max1-SpP S-arz angle, Pog’-Por distance, angles Gl’LsPog’ and SnPog’-Pn (R2 from 0.718 to 0.847).
References
[2] Behbehani, F., Hicks, E.P., Beeman, C., Kluemper, G.T., & Rayens, M.K. (2006). Racial variations in cephalometric analysis between Whites and Kuwaitis. Angle Orthod., 76(3), 406-411. doi: 10.1043/0003-3219(2006)076[0406:RVICAB]2.0.CO;2
[3] Björk, A. (1966). Sutural growth of the upper face studied by the implant method. Acta Odontologica Scandinavica, 24(2), 109-27. doi: 10.3109/00016356609026122
[4] Burstone, C.J., James, R.B., Legan, H., Murphy, G.A., & Norton, L.A. (1978). Cephalometrics for orthognathic surgery. Journal of Oral Surgery (American Dental Association: 1965, 36(4), 269-277. PMID: 273073
[5] Chernysh, A.V. (2018). Regression models of individual cephalometric indicators used in the method of R.M. Ricketts. Biomedical and Biosocial Anthropology, 32, 56-62. doi.org/10.31393/bba32-2018-08
[6] Chernysh, A.V, Hasiuk, P.A, Yasko, V.V, & Smolko, D.G. (2018). Regression models of individual cephalometric indicators used in the method of E.P. Harvold. Reports of Morphology, 24(4), 29-34. https://doi.org/10.31393/morphology-journal-2018-24(4)-04
[7] Dmitriev, M.O. (2017). Зв’язки основних краніальних показників з характеристиками положення зубів верхньої і нижньої щелеп та профілем м’яких тканин обличчя в юнаків і дівчат [Relationships of the main cranial indicators with the characteristics of the position of the teeth of the upper and lower jaws and the profile of the soft tissues of the face in boys and girls]. Вісник морфології – Reports of Morphology, 23(1), 125-31.
[8] Dmitriev, M.O. (2017). Визначення нормативних цефалометричних параметрів за методикою Г.Шмута для українських юнаків та дівчат [Identification of normative cephalometric parameters based on G.Schmuth method for young male and female ukrainians]. Вісник морфології – Reports of Morphology, 23(2), 288-292.
[9] Dmitriev, M.O., Chernysh, A.V., & Chugu, T.V. (2018). Cephalometric studies of Ukrainian boys and girls with physiological bite by the method of Charles J. Burstone. Biomedical and Biosocial Anthropology, 30, 62-67. doi: 10.31393/bba30-2018-09
[10] Dmitriev, М.О, Dudik, О.P, Chugu, T.V, & Cherkasova, O.V. (2018). Modeling of gnatometric indices depending on parameters of basal cranial structures in boys and girls with orthognathic bite. Bulletin of Scientific Research, 90(1), 110-113. doi.org/10.11603/2415-8798.2018.1.8764]
[11] Doroshenko, S.I., & Kulginsky, E.A. (2007). Fundamentals of Teleradiography. Kyiv: Health.
[12] Drevensek, M., Farcnik, F., & Vidmar, G. (2006). Cephalometric standards for Slovenians in the mixed dentition period. Eur. J. Orthod., 28(1), 51-57. doi: 10.1093/ejo/cji081
[13] Gonzalez, M.B., Caruso, J.M., Sugiyama, R.M., & Schlenker, W.L. (2013). Establishing cephalometric norms for a Mexican population using Ricketts, Steiner, Tweed and Arnett analyses. APOS Trends Orthod., (3), 171-177. doi: 10.4103/2321-1407.121437
[14] Gueye, M., Dieng, L., Mbodj, E.B., Seck, A.K., Toure, A., Thioune, N., & Ngom, P.I. (2014). Relationship between bizygomatic width and the size of maxillary anterior teeth among young Senegalese black people recruited in army. Odontostomatol. Trop., 37(148), 5-12. PMID: 25980092
[15] Gunas, I.V, Chernysh, A.V, Cherkasov, V.G., & Cherkasova, O.V. (2018). Modeling by using regression analysis of teleroentgenographic individual indicators used in the method of Charles J. Burstone. Biomedical and Biosocial Anthropology, 31, 59-65. doi: 10.31393/bba31-2018-08
[16] Hashim, H.A., & AlBarakati, S.F. (2003). Cephalometric soft tissue profile analysis between two different ethnic groups: a comparative study. J. Contemp. Dent. Pract., 4(2), 60-73. doi: 10.5005/jcdp-4-2-60
[17] Huang, W.J., Taylor, R.W., & Dasanayake, A.P. (1998). Determining cephalometric norms for Caucasians and African Americans in Birmingham. Angle Orthod., 68(6), 503-511. doi: 10.1043/0003-3219(1998)068<0503:DCNFCA>2.3.CO;2
[18] Jacobson, A., & White, L. (2007). Radiographic cephalometry: from basics to 3-D imaging. American Journal of Orthodontics and Dentofacial Orthopedics, 131(4), S133. doi: 10.1016/j.ajodo.2007.02.038
[19] Jarabak, J.R., & Fizzell, J.A. (1972). Technique and treatment with light-wire edgewise appliances. Ed.2, St. Louis. The CV Mosby Company.
[20] Johannsdottir, B., Thordarson, A., & Magnusson, T.E. (2004). Craniofacial skeletal and soft tissue morphology in Icelandic adults. European Journal of Orthodontics, 26, 245-250. doi: 10.1093/ejo/26.3.245
[21] Kalha, A.S., Latif, A., & Govardhan, S.N. (2008). Soft-tissue cephalometric norms in a South Indian ethnic population. Am. J. Orthod. Dentofacial. Orthop., 133(6), 876-881. doi: 10.1016/j.ajodo.2006.05.043
[22] Kumari, L., & Das, A. (2017). Determination of Tweed’s cephalometric norms in Bengali population. Eur. J. Dent., 11(3), 305-310. doi: 10.4103/ejd.ejd_274_16
[23] Liang, С., Liu, S., Liu, Q., Zhang, B., & Li, Z. (2014). Norms of McNamara’s Cephalometric Analysis on Lateral View of 3D CT Imaging in Adults from Northeast China. Journal of Hard Tissue Biology, 23(2), 249-254. doi: 10.2485/jhtb.23.249
[24] Маrchenko, А.V., Prokopenko, O.S., Dzevulska, І.V., Zakalata T.R., & Gunas, I.V. (2021). Mathematical modeling of teleroentgenographic parameters according to the method of Schwarz A.M. depending on the basic cephalometric parameters in Ukrainian young men and young women with different face types. Wiadomości Lekarskie, 74(6), 1488-1492. doi: 10.36740/WLek202106137
[25] Mohammad, H.A., Abu Hassan, M.I., & Hussain, S.F. (2011). Academic Journals Cephalometric evaluation for Malaysian Malay by Steiner analysis. Scientific Research and Essays, 6(3), 627-634. doi: 10.5897/SRE10.869
[26] Phulari, B. (2013). An atlas on cephalometric landmarks. JP Medical Ltd. doi: 10.5005/jp/books/11877
[27] Prokopenko, O.S., Beliaiev, E.V., Dmitriev, M.O., Cherkasova, O.V., & Skoruk R.V. (2020). Features of cephalometric parameters, which usually do not change during surgery and orthodontic interventions, in Ukrainian young men and women with orthognathic occlusion and different types and profiles of the face according to Schwarz A.M. Вісник морфології – Reports of Morphology, 26(3), 37-45. doi: 10.31393/bba39-2020-10
[28] Ricketts, R.M. (1961). Cephalometric analysis and synthesis. The Angle Orthodontist., 31(3):141-56.
[29] Schwarz, A.M. (1960). Röntgenostatics; Practical Evaluation of the Tele-X-ray-photo (study-head-plate) (Vol.1). Leo L. Bruder.
[30] Schwarz, A.M. (1961). Roentgenostatics: a practical evaluation of the x-ray headplate. American Journal of Orthodontics, 47(8), 561-585. doi: 10.1016/0002-9416(61)90001-X
[31] Steiner, C.C. (1959). Cephalometrics in clinical practice. Angle Orthod., 29(1), 8-29. doi: 10.1043/0003-3219(1959)029<0008:CICP>2.0.CO;2
[32] Wu, J., Hägg, U., & Rabie, A.B. (2007). Chinese norms of McNamara’s cephalometric analysis. Angle Orthod., 77(1), 12-20. doi: 10.2319/021606-62R.1

This work is licensed under a Creative Commons Attribution 4.0 International License.