Comparative characteristics of changes in central hemodynamics during early recovery after different exercise regimes
Abstract
The cardiovascular system is one of the most important functional systems of the body, which determine the level of physical performance of the body. Insufficient study of the response of the circulatory system to the combination of strength training with endurance exercises requires more detailed comparative studies of the impact of dynamic and static loads on the indicators of central hemodynamics. Accordingly, the aim of our study was to study the characteristics of the reaction of the cardiovascular system in the period of early recovery after dosed exercise of a dynamic and static nature. The study examined the response of the central hemodynamics of young men in the period of early recovery after dynamic loading (Martine functional test) and static loading (holding on the stand dynamometer DS-200 force with a power of 50% of maximum standing force). The change in circulatory system parameters was recorded using a tetrapolar thoracic impedance rheoplethysmogram on a computerized diagnostic complex “Cardio +”. It is established that the dynamic load in the period of early recovery does not cause a significant positive chronotropic effect, leads to a decrease in vascular resistance of blood flow, to an increase in pulse blood pressure. The increase in cardiac output is mainly due to the increase in stroke volume, which indicates a fairly high functional reserves of the heart. It is revealed that under conditions of static loading the reaction of central hemodynamics and the course of early recovery are radically different from the changes of indicators under dynamic loading. In persons with a normodynamic type of reaction to dynamic load, there are no significant changes in the minute volume of blood at a similar volume of active muscle mass static load. Meeting the metabolic needs of working skeletal muscles and compensating for the oxygen debt is realized by increasing the total peripheral vascular resistance and increasing systolic blood pressure in the postpartum period. The physiological meaning of this phenomenon is to maintain a sufficient level of venous return of blood to ensure the pumping function of the heart.
References
[2] Boraita, A., Heras, M., Morales, F., Marina-Breysse, M., Canda, A., Rabadan, M. … Tunon, J. (2016). Reference values of aortic root in male and female white elite athletes according to sport. Circ Cardiovasc Imaging, 9(10), e005292. doi: 10.1161/CIRCIMAGING.116.005292.
[3] D’Andrea, A., Formisano, T., Riegler, L., Scarafile, R., America, R., Martone, F. … Calabro, R. (2017). Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”. Adv Exp Med Biol, 999, 21-41. doi: 10.1007/978-981-10-4307-9_2.
[4] D’Ascenzi, F., Pisicchio, C., Caselli, S., Di Paolo, F., Spataro, A., & Pelliccia, A. (2017). RV remodeling in Olympic athletes. JACC Cardiovasc Imaging, 10(4), 385-393. doi: 10.1016/j.jcmg.2016.03.017
[5] De la Garza, M., Carro, A., & Caselli, S. (2020). How to interpret right ventricular remodeling in athletes. Clin. Cardiol., 43(8), 843-851. doi: 10.1002/clc.23350
[6] Doleeb, S., Kratz, A., Salter, M., & Thohan, V. (2019). Strong muscles, weak heart: testosterone-induced cardiomyopathy. ESC Heart Failure, 6(5), 1000-1004. https://doi.org/10.1002/ehf2.12494
[7] Domenech-Ximenos, B., la Garza, M., & Prat-González, S. (2019). Exercise-induced cardio-pulmonary remodelling in endurance athletes: not only the heart adapts. Eur. J. Prev. Cardiol., 27(6), 651-659. doi: 10.1177/2047487319868545
[8] Fagerberg, P. (2018). Negative Consequences of Low Energy Availability in Natural Male Bodybuilding: A Review. Int. J. Sport Nutr. Exerc. Metab., 28(4), 1, 385-402. doi: 10.1123/ijsnem.2016-0332
[9] Fluck, M., Kramer, M., Fitze, D., Kasper, S., Franchi, M., & Valdivieso, P. (2019). Cellular Aspects of Muscle Specialization Demonstrate Genotype – Phenotype Interaction Effects in Athletes. Front. Physiol., 8(10), 526. doi: 10.3389/fphys.2019.00526
[10] Franchi, M., Reeves, N., & Narici, M. (2017). Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol., 8, 447. doi: 10.3389/fphys.2017.00447
[11] Gati, S., Sharma S., & Pennell, D. (2018). The role of cardiovascular magnetic resonance imaging in the assessment of highly trained athletes. JACC Cardiovasc. Imaging, 11(2P1), 247-259. doi: 10.1016/j.jcmg.2017.11.016
[12] Koshy, S., Koshy, G., & Lekha, G. (2018). Changes in right ventricular morphology and function in athletes. Echocardiography, 35(6), 767-768. doi: 10.1111/echo.14027
[13] Longstrom, J., Colenso-Semple, L., Waddell, B., Mastrofini, G., Trexler, E., & Campbell, B. (2020). Physiological, Psychological and Performance-Related Changes Following Physique Competition: A Case-Series. J. Funct. Morphol. Kinesiol., 5(2), 27-35. doi: 10.3390/jfmk5020027
[14] Korytko, Z., Kulitka, E., Bas, O., Chornenka, C., Zahidnyy, V., & Yakubovskyi T. (2020). Adequacy criteria of physical loadings and their use in sports, physical education, and physical rehabilitation. Physical Education, Sport and Health Culture in Modern Society, 50(2), 68-77. https://doi.org/10.29038/2220-7481-2020-02-68-77
[15] Maden-Wilkinson, T., Balshaw, T., Massey, G., & Folland, J. (2020). What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics. J. Appl. Physiol, 128(4), 1000-1011. doi: 10.1152/japplphysiol.00224.2019
[16] Marrakchi, S., Kammoun, I., Bennour, E., Laroussi, L., Ben Miled M., & Kachboura S. (2020). Inherited primary arrhythmia disorders: cardiac channelopathies and sports activity. Herz, 45(2), 142-157. doi: 10.1007/s00059-018-4706-2
[17] Martinez, V., la Garza M., & Grazioli, G. (2019). Cardiac performance after an endurance open water swimming race. Eur. J. Appl. Physiol., 119(4), 961-970. doi: 10.1007/s00421-019-04085-x
[18] Martino, F., Perestrelo, A., Vinarsky, V., Pagliari, S., & Forte, G. (2018). Cellular Mechanotransduction: From Tension to Function. Front. Physiol., 5(9), 824. doi: 10.3389/fphys.2018.00824
[19] Mont, L., Pelliccia, A., Sharma, S., Biffi, A., Borjesson, M., Terradellas, J. … La Gerche, A. (2017). Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Eur. J. Prev. Cardiol., 24, 41-69. doi.org/10.1093/europace/euw243.
[20] Pelliccia, A., Sharma, S., Gati, S., Back, M., Borjesson, M., Caselli, S. … Wilhelm, M. (2021). Corrigendum to: 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. European Heart Journal, 42(1), 17-96. doi: 10.1093/eurheartj/ehaa605
[21] Qasem, M., George, K., Somauroo, J., Forsythe, L., Brown, B., & Oxborough, D. (2019). Right ventricular function in elite male athletes meeting the structural echocardiographic task force criteria for arrhythmogenic right ventricular cardiomyopathy. J. Sports Sci., 37(3), 306-312. doi: 10.1080/02640414.2018.1499392
[22] Radmilovic, J., D’Andrea, A., D’Amato, A., Tagliamonte, E., Sperlongano, S., Riegler, L., & Scarafile, R. (2019). Echocardiography in Athletes in Primary Prevention of 2Sudden Death. J. Cardiovasc. Echogr., 29(4), 139-148. doi: 10.4103/jcecho.jcecho_26_19
[23] Sanz, M., Garza, D., & Giraldeau, G. (2017). Influence of gender on right ventricle adaptation to endurance exercise: an ultrasound two-dimensional speckle-tracking stress study. Eur. J. Appl. Physiol., 117(3), 389-396. doi: 10.1007/s00421-017-3546-8
[24] Schoenfeld, B., & Grgic, J. (2018). Evidence-Based Guidelines for Resistance Training Volume to Maximize Muscle Hypertrophy. Strength Cond. J., 40(4), 107-112. doi: 10.1519/SSC.0000000000000363

This work is licensed under a Creative Commons Attribution 4.0 International License.