Morphological features of the respiratory part in guinea pigs lung in dynamics of experimental allergic inflammatory process

Keywords: alveolar epithelium, surfactant, allergic inflammation, ovalbumin, guinea pig.

Abstract

The main function of the components of the respiratory tract is gas exchange while maintaining homeostasis in lung, given the pathogenic and non-pathogenic elements of the environment contained in the inhaled air. Morphological changes of the components of the respiratory part in lung of human and animals of adaptive nature under the influence of various factors on the body today remain insufficiently studied. The aim of the study was to investigate the morphological changes of the components of the respiratory part of guinea pigs lung in the dynamics of experimental ovalbumin-induced allergic inflammation. We used histological and electron microscopic methods to study the lungs of 48 male guinea pigs in experimental ovalbumin-induced allergic inflammation, simulated by subcutaneous sensitization and subsequent intranasal inhalation with ovalbumin. Morphological changes of the components of the respiratory tract of the lungs were determined in the early and late phases of allergic inflammatory process at the optical and submicroscopic levels. The early phase (23rd and 30th days of the experiment) was characterized by a predominance of alterative and destructive changes, consisted in the desquamation of the alveolar epithelium with a violation of the blood-gas barrier and hemomicrocirculatory bed. Type II alveolar cells had lesions of varying severity in the form of the absence of lamellar bodies or disturbances in the formation of their contents, vacuolization of the cytoplasm, mitochondrial damage. In the late phase of the development of the allergic inflammatory process (36th and 44th days of the experiment) in the respiratory part of lung were dominated adaptive and restorative changes. In addition, we observed dilation of the lung alveoli and thinning of the interalveolar septa, which is a consequence of the cascade of reactions of the local neuroendocrine and immune systems of lung as a result of allergen action. Thus, experimental ovalbumin-induced allergic inflammatory process of the respiratory tract is accompanied by structural and functional changes in the components of the respiratory part in lung of guinea pigs in stages depending on the duration of the experiment.

Downloads

Download data is not yet available.

References

Amin, K. (2012). The role of mast cells in allergic inflammation. Respiratory Medicine, 106(1), 9-14. doi: 10.1016/j.rmed.2011.09.007

Bissonnette, E. Y., Lauzon-Joset, J.-F., Debley, J. S., & Ziegler, S. F. (2020). Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Frontiers in Immunology, 11. doi: 10.3389/fimmu.2020.583042

Coleman, M. M., Ruane, D., Moran, B., Dunne, P. J., Keane, J., & Mills, K. H. G. (2013). Alveolar Macrophages Contribute to Respiratory Tolerance by Inducing FoxP3 Expression in Naive T Cells. American Journal of Respiratory Cell and Molecular Biology, 48(6), 773-780. doi: 10.1165/rcmb.2012-0263oc

Faffe, D. S., & Zin, W. A. (2009). Lung Parenchymal Mechanics in Health and Disease. Physiological Reviews, 89(3), 759-775. doi: 10.1152/physrev.00019.2007

Ha, E. H., Choi, J.-P., Kwon, H.-S., Park, H. J., Lah, S.J., Moon, K.-A., … Cho, Y.S. (2019). Endothelial Sox17 promotes allergic airway inflammation. Journal of Allergy and Clinical Immunology, 144(2), 561-573. doi: 10.1016/j.jaci.2019.02.034

Herasymiuk, I. E., & Vatsyk, M. O. (2018). Features of reorganization of blood vessels of lungs of rats at various degrees of total dehydration. Morphologia, 12(3), 44-50. doi: 10.26641/1997-9665.2018.3.44-50

Herasymiuk, I. E., & Vatsyk, M. O. (2019). Features of remodeling of blood vessels of rat lungs in applying different methods of fluid resuscitation after general dehydration. Bulletin of Problems Biology and Medicine, 1(2), 272. doi: 10.29254/2077-4214-2019-1-2-149-272-276

Hussell, T., & Bell, T. J. (2014). Alveolar macrophages: plasticity in a tissue-specific context. Nature Reviews Immunology, 14(2), 81-93. doi: 10.1038/nri3600

Joshi, N., Walter, J. M., & Misharin, A. V. (2018). Alveolar Macrophages. Cellular Immunology, 330, 86-90. doi: 10.1016/j.cellimm.2018.01.005

Knudsen, L., & Ochs, M. (2018). The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochemistry and Cell Biology, 150(6), 661-676. doi: 10.1007/s00418-018-1747-9

Koptev, M. M., Vynnyk, N. І., Kokovska, O. V., Filenko, B. M., & Bilash, S. M. (2018). The use of semi-thin section method in the study of stress-induced structural changes in lungs. World of Medicine and Biology, 64(14), 153. doi: 10.26724/2079-8334-2018-2-64-153-156

Lambrecht, B. N., & Hammad, H. (2014). The immunology of asthma. Nature Immunology, 16(1), 45-56. doi: 10.1038/ni.3049

McKenzie, A. N. J. (2014). Type-2 Innate Lymphoid Cells in Asthma and Allergy. Annals of the American Thoracic Society, 11(Suppl. 5), S263-S270. doi: 10.1513/annalsats.201403-097aw

Popko, S. S. (2021). Changes in the cellular composition of guinea pig’s distal airways epithelium in the dynamics of experimental ovalbumin-induced allergic inflammation. Reports of Morphology, 27(3), 55-60. doi: 10.31393/morphology-journal-2021-27(3)-08

Popko, S. S., Evtushenko, V. M., & Syrtsov, V. K. (2020). Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye Medical Journal, 22(4), 568-575. doi: 10.14739/2310-1210.4.208411

Pronina, O. M., Koptev, M. M., Bilash, S. M., & Yeroshenko, G. A. (2018). Response of hemomicrocirculatory bed of internal organs on various external factors exposure based on the morphological research data. World of Medicine and Biology, 63(1), 153-157. doi: 10.26.724 / 2079-8334-2018-1-63-153-157

Stegemann-Koniszewski, S., Jeron, A., Gereke, M., Geffers, R., Kröger, A., Gunzer, M., & Bruder, D. (2016). Alveolar Type II Epithelial Cells Contribute to the Anti-Influenza A Virus Response in the Lung by Integrating Pathogen- and Microenvironment-Derived Signals. MBio, 7(3). doi: 10.1128/mbio.00276-16

Sui, P., Wiesner, D. L., Xu, J., Zhang, Y., Lee, J., Van Dyken, S., … Sun, X. (2018). Pulmonary neuroendocrine cells amplify allergic asthma responses. Science, 360(6393), eaan8546. https://doi.org/10.1126/science.aan8546

Westphalen, K., Gusarova, G. A., Islam, M. N., Subramanian, M., Cohen, T. S., Prince, A. S., & Bhattacharya, J. (2014). Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature, 506(7489), 503-506. doi: 10.1038/nature12902

Winkler, C., & Hohlfeld, J. M. (2013). Surfactant and allergic airway inflammation. Swiss Med. Wkly., 143, w13818. doi: 10.4414/smw.2013.13818

Published
2022-02-23
How to Cite
Popko, S. S. (2022). Morphological features of the respiratory part in guinea pigs lung in dynamics of experimental allergic inflammatory process. Reports of Morphology, 28(1), 54-58. https://doi.org/10.31393/morphology-journal-2022-28(1)-08