Neuron-glial relations of the posterior horns of the spinal cord of human fetuses

Keywords: human fetuses, spinal cord, posterior horns, neuron-glial relations, radial glia, neural stem cells


Despite the relatively sufficient study of the structure and functioning of the nervous system, interest in the problem of neuron-glial relationships continues to grow steadily, as this parameter reflects the dynamics of the development of nervous tissue and can be used to assess the quality level of morphological changes. The purpose of the study: to establish the morphogenesis and neuron-glial relationships of the posterior horns of the human spinal cord in the fetal period of ontogenesis. This study was performed on the preparations of 104 human fetuses from 8-9 weeks to 39-40 weeks using anatomical, histological, immunohistochemical and morphometric methods. Statistical processing of the numerical data of the obtained results was carried out using the licensed software package “Statistica 6.1” of the StatSoft company using parametric and non-parametric methods. During the research, it was established that in the fetal period, the greater proliferative activity of the dorsal neuroepithelium is determined at 8-9 weeks: in the cervical segments – 10 % (р<0.05), in the thoracic, lumbar and sacral segments – 9 % (р<0.05). By 39-40 weeks, this indicator gradually becomes smaller: in the cervical and lumbar segments, 4 % of cells (2-3 cells reacted) (p<0.05) and in the thoracic and sacral segments – 3 % (1-2 cells reacted) (p<0.05). It was found that throughout the fetal period there is a tendency to a gradual decrease in the density of neurons and gliocytes. The glial index, on the contrary, up to 39-40 weeks increases, and at the time of birth it is equal to 2.1 in the cervical, thoracic and lumbar segments, and 2.0 in the sacral segments. It was found that at 11-12 weeks, radial glia fibers form mesh structures within the neuronal complexes, which coincides with the beginning of the formation of neuron-glial complexes of the posterior horns. At 17-18 weeks, the fibers of radial glia keep the radial direction only in the middle part of the posterior horns. At 34-35 weeks, vimentin expression was determined to be relatively moderate in the remnants of radial glia near the dorsal neuroepithelium and focal expression of vimentin around vessels within the posterior horns. Expression of vimentin in the neuroepithelium of fetuses of 39-40 weeks was absent. In this age period, the neuroepithelium is structured from ependymocytes and radial glia cells are absent, as there is a relatively strong expression of S-100 in the neuroepithelium. Relatively strong expression of synaptophysin occurred in the posterior horns of 8-9 week fetuses. This age period is the beginning of the establishment of synaptic connections.


Arora, M. (2016). Fetal anatomy: morphometry of vertebral canal and spinal cord of cervical region in human fetuses. Annals of International Medical and Dental Research, 2(3), 128-131.

Arulkandarajah, K. H., Osterstock, G., Lafont, A., Le Corronc, H., Escalas, N., Corsini, S. … Mangin, J.-M. (2021). Neuroepithelial progenitors generate and propagate non-neuronal action potentials across the spinal cord. Curr. Biol., 31(20), 4584-4595. doi: 10.1016/j.cub.2021.08.019

Bahney, J., & von Bartheld, C. S. (2018). The cellular Composition and glia-neuron ratio in the spinal cord of a human and a non-human primate: comparison with other species and brain regions. Anat. Rec., 301(4), 697-710. doi: 10.1002/ar.23728

Balazs, A., Meszar, Z., Hegedüs, K., Kenyeres, A., Hegyi, Z., Docs, K., & Antal, M. (2017). Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn. Brain Struct. Funct., 222(5), 2157-2171. doi: 10.1007/s00429-016-1331-9

Bentivoglio, M., & Mazzarello, P. (1999). The history of radial glia. Brain Res. Bull., 49(5), 305-315. doi: 10.1016/s0361-9230(99)00065-9

Berezhnaya, M. A., Gargin, V. V., & Маslovskiy, S. Yu. (2013). Межполушарная ассиметрия нейроно-глиально-капиллярных взаимоотношений V слоя в верхних лобных извилинах головного мозга человека [Interhemispheric asymmetry of the neuron-glial-capillary interrelated layer V in the upper frontal gyri of the human brain]. Вісник проблем біології і медицини – Bulettin of problems in biology and medicine, 3(2), 274-277.

Bjugn, R. (1993). The use of the optical dissector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse – with a comparative note on the rat spinal cord. Brain Res., 627(1), 25-33. doi: 10.1016/0006-8993(93)90744-8

Burish, M. J., Peebles, J. K., Baldwin, M. K., Tavares, L., Kaas, J. H., & Herculano-Houzel, S. (2010). Cellular scaling rules for primate spinal cords. Brain Behav. Evol., 76, 45-59. doi: 10.1159/000319019

Cassaro, M., Rugge, M., Tieppo, C., & Giacomelli, L. (2007). Indefinite for non-invasive neoplasia lesions pn gastric intestinal metaplasia: the immunophenotype. J. Clin. Pathol., 60, 615-621. doi: 10.1136/jcp.2006.040386

Cedeño, D. L., Smith, W. J., Kelley, C. A., & Vallejo, R. (2020). Spinal cord stimulation using differential target multiplexed programming modulates neural cell-specific transcriptomes in an animal model of neuropathic pain. Mol. Pain, 16, 1744806920964360. doi: 10.1177/1744806920964360

Costa, V., Lugert, S., & Jagasia, R. (2015). Role of adult hypocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handbook of Experimental Pharmacology, 228, 99-155. doi: 10.1007/978-3-319-16522-6_4

Herculano-Houzel, S. (2014). The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia, 62, 1377-1391. doi: 10.1002/glia.22683

Herculano-Houzel, S. (2017). Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci., 16, 1-7. doi: 10.1016/j.cobeha.2017.02.004

Kuzmicz-Kowalska, K, & Kicheva, A. (2021). Regulation of size and scale in vertebrate spinal cord development. Rev. Dev. Biol., 10(3), e383. doi: 10.1002/wdev.383

Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C., & Kriegstein, A. R. (2016). Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron, 91(6), 1219-1227. doi: 10.1016/j.neuron.2016.09.005

Ma, J. J., Zhang, T. Y., Diao, X. T., Yao, L., Li, Y. X., Suo, Z. W. … Liu, Y. N. (2021). BDNF modulated KCC2 ubiquitylation in spinal cord dorsal horn of mice. Eur. J. Pharmacol., (5), 906. doi: 10.1016/j.ejphar.2021.174205

Peirs, C., Williams, S. G., Zhao, X., Arokiaraj, C. M., Ferreira, D. W., Noh, M. C. … Seal, R. P. (2021). Mechanical allodynia circuitry in the dorsal horn is defined by the nature of the injury. Neuron, 109(1), 73-90. doi: 10.1016/j.neuron.2020.10.027

Popele, R., & Bosco, G. (2003). Sophisticated spinal contributions to motor control. Trends Neurosci., 26(5), 269-276. doi: 10.1016/S0166-2236(03)00073-0

Rakic, P. (2003). Elusive radial glial cells: historical and evolutionary perspective. Glia, 43, 19-32. doi: 10.1002/glia.10244

Rueger, M., & Schroeter, M. (2015) In vivo imaging of endogenous neural stem cells in the adult brain. World Journal Stem Cells, 7(1), 75-83. doi: 10.4252/wjsc.v7.i1.75

Ruiz-Sauri, A., Orduña-Valls, J. M., Blasco-Serra, A., Tornero-Tornero, C., Cedeño, D. L., Bejarano-Quisoboni, D. … Vallejo, R. (2019). Glia to neuron ratio in the posterior aspect of the human spinal cord at thoracic segments relevant to spinal cord stimulation. J. Anat., 235(5), 997-1006. doi: 10.1111/joa.13061

Ryhlik, S. V. (2014). Морфологічні особливості вентролатеральної групи ядер таламуса проміжного мозку людини [Morphological features of the ventrolateral group of nuclei of the thalamus of the human midbrain]. Вісник проблем біології і медицини – Bulettin of Problems in Biology and Medicine, 4(1), 285-289.

Skarlatou, S., Hérent, C., Toscano, E., Mendes, C. S., Bouvier, J., & Zampieri, N. (2020). Afadin Signaling at the Spinal Neuroepithelium Regulates Central Canal Formation and Gait Selection. Cell. Rep., 31(10), 107741. doi: 10.1016/j.celrep.2020.107741

Smith, T. M., Lee, D., Bradley, K., & McMahon, S. B. (2020). Methodology for quantifying excitability of identified projection neurons in thedorsal horn of the spinal cord, specifically to study spinal cord stimulation paradigms. J. Neurosc. Methods, 330, 108479. doi: 10.1016/j.jneumeth.2019.108479

Stepanov, A. S., Akulinin, V. A., Mysik, A. V., Stepanov, S. S., & Avdeev, D. B. (2017). Neuro-glio-vascular complexes of the brain after acute ischemia. General Reanimatology, 13(6), 6-17. doi: 10.15360/1813-9779-2017-6-6-17

Vernygorodskyi, S. V., Shkolnikov, V. S., & Prykhodko, S. O. (2021). The morphology and neuronal-glial correlations of the spinal cord posterior horns of human embryos. International Medical Journal, 3(3), 93-100. doi: 10.5455/im.41865

Von Bartheld, C. S., Bahney, J., & Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol., 524, 3865-3895. doi: 10.1002/cne.24040

Zhou, W., Xie, Z., Li, C., Xing, Z., Xie, S., Li, M., & Yao, J. (2021). Driving effect of BDNF in the spinal dorsal horn on neuropathic pain. Neuroscience Letters, 756, 135965. doi: 10.1016/j.neulet.2021.135965

Zhurakivska, O. Ya. (2014). Становлення нейрон-гліо-капілярних співвідношень у вентромедіальному ядрі гіпоталамуса в постнатальному періоді онтогенезу [Formation of neuron-glio-capillary ratios in the ventromedial nucleus of the hypothalamus in the postnatal period of ontogenesis]. Науковий вісник міжнародного гуманітарного університету – Scientific Bulletin of the International Humanitarian University, (7), 15-18.

How to Cite
Prykhodko, S. O., & Shkolnikov, V. S. (2022). Neuron-glial relations of the posterior horns of the spinal cord of human fetuses. Reports of Morphology, 28(4), 18-26.