Changes in the structural organization of lymph nodes during short-term exposure to monosodium glutamate

Keywords: experiment, monosodium glutamate, lymphatic node, cortical substance, medullary substance, lymphocytes


Monosodium glutamate is a common food additive that belongs to the group of flavor enhancers used in a wide range of food products. The potentially negative impact of monosodium glutamate on human health prompts us to question the safety of its widespread use. The article presents and analyzes the data of an experimental study conducted on 40 white male and female rats of reproductive age (2.5-3.5 months old) weighing 120-190 g. The purpose of the study is to study histological, morphometric, and ultrastructural changes in the lymph nodes of rats under conditions of short-term exposure to monosodium glutamate. An experimental group of animals (10 male rats, 10 female rats), which was on a standard vivarium diet, was given monosodium glutamate at a dose of 0.07 g/kg of rat body weight by pipette every day at the same time for four weeks, followed by free access to water and food. In animals of the intact group, the structure of mesenteric lymph nodes corresponded to the species norm. In the experimental group of animals, after four weeks of monosodium glutamate exposure, it was found that the paracortical area contained a g larger number of post-capillary venules with a high endothelium compared to the intact and control groups of animals. Changes in the vascular bed were established, in particular, the arteries both in the thickness of the organ and in its hilum contain a thickened wall, their lumen is full of blood. Veins are also full-blooded, dilated and deformed. Swelling of the parenchyma of nodes and signs of immune activity are observed. There is a significant decrease in the relative area of lymphoid nodules and the mantle zone, an increase in the relative area of the medullary substance of the node, corticomedullary index, germinal centers, paracortical area, and medullary cords. Part of lymphocytes of all populations with signs of apoptosis. The other part has an uneven karyolemma contour, the nucleolus is not visualized in all lymphocytes, the cytoplasm is clear and contains organelles. Mitochondria are hypertrophied with a light matrix. Therefore, even a short-term daily exposure to monosodium glutamate, namely four weeks, causes changes in the structural organization of mesenteric lymph nodes.


Abdel Moneim, W. M., Yassa, H. A., Makboul, R. A., & Mohamed, N. A. (2018). Monosodium glutamate affects cognitive functions in male albino rats. Egypt J. Forensic Sci, 8(1), 1-10. doi: 10.1186/s41935-018-0038-x

Bautista, R. J. H., Mahmoud, A. M., Kоnigsberg, M., & Guerrero, N. E. L. D. (2019). Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomedicine & Pharmacotherapy, 111, 503-516. doi: 10.1016/j.biopha.2018.12.108

Bhandari, U. (2018). Effect of Embelin in Monosodium Glutamate Induced Obesity in Male Neonatal Wistar Rats. Atheroscler. Suppl., 32, 138. doi: 10.1016/j.atherosclerosissup.2018.04.423

Contini, M. C., Fabro, A., Millen, N., Benmelej, A., & Mahieu, S. (2017). Adverse effects in kidney function, antioxidant systems and histopathology in rats receiving monosodium glutamate diet. Experimental and Toxicologic Pathology, 69(7), 547-556. doi: 10.1016/j.etp.2017.03.003

Demchenko, G. A., Abdreshov, S. N., & Nurmakhanova, B. A. (2019). Contractile activity of lymph nodes in young, middle-aged, and old rats. Bulletin of Experimental Biology and Medicine, 167(2), 194-197. doi: 10.1007/s10517-019-04489-x

Hussein, U., Hassan, N., Elhalwagy, M., Zaki, A. R., Abubakr, H. O., Nagulapalli Venkata, K. C. … Bishayee, A. (2017). Ginger and Propolis Exert Neuroprotective Effects against Monosodium Glutamate-Induced Neurotoxicity in Rats. Molecules, 22(11), 1928. doi: 10.3390/molecules22111928

Islam, M. N., Khan, M. Z. I., Jahan, M. R., & Shinoda, K. (2018). Developmental trajectory of the prenatal lymphoid organs in native chickens: a macro anatomical study. Asian Journal of Medical and Biological Research, 3(4), 432-436. doi: 10.3329/ajmbr.v3i4.35333

Galeeva, E. N., & Ul’yanov, O. V. (2019). Topographic and anatomical characteristic of visceral lymphatic nodes of the abdomen in the intermediate fetal period of human ontogenesis. Journal of Anatomy and Histopathology, 8(2), 38-42. doi: 10.18499/2225-7357-2019-8-2-38-42

Gavrilin, P. N., Lieshchova, M. A., Gavrilina, O. G., & Boldyreva, T. F. (2018). Prenatal morphogenesis of compartments of the parenchyma of the lymph nodes of domestic cattle (Bos taurus). Regulatory Mechanisms in Biosystems, 9(1), 95-104. doi: 10.15421/021814

Gavrilin, P. N., Gavrilina, О. G., & Kravtsovа, M. V. (2017). The compartments of the parenchyma of the lymph nodes in the newborn bull calves of domestic cattle (Bos taurus). Regulatory Mechanisms in Biosystems, 8(2), 169-178. doi: 10.15421/021727

Kolenchenko, O. O., Falalieieva, T. M., Berehova, T. V., & Kuryk, O. N. (2017). Cтан ліпідного обміну щурів за умов введення глутамату натрію [The state of lipid metabolism in rats under conditions of monosodium glutamate administration]. Актуальні проблеми сучасної медицини: Вісник української медичної стоматологічної академії – Actual Problems of Modern Medicine: Bulletin of the Ukrainian Medical Stomatological Academy, 17(4-2(60), 58-61.

Krynytska, I., Marushchak, M., Naumova, L., & Mazur, L. (2019). The Toxic Impact of Monosodium Glutamate in Rats. J. Med. J., 53(2), 91-101.

Lieshchova, M. A., Oliyar, A. V., Bilyi, D. D, Skliarov, P. M., Masiuk, D. M., Logvinova, V. V., & Bohomaz, A. A. (2020). Dynamics of lymph nodes weight characteristics in cattle during the prenatal period of their ontogenesis. Theoretical and Applied Veterinary Medicine, 8(4), 283-288. doi: 10.32819/2020.84042

Nnadoziem, J. O., Chijioke, U. O., Okafor, O. C., Olusina, D. B., Oli, A. N., Nwonu, P. C. … Chijioke, C. P. (2019). Chronic toxicity of low dose monosodium glutamate in albino Wistar rats. BMC Res Notes, 12(1), 1-7. doi: 10.1186/s13104-019-4611-7

Streich, K., Smoczek, M., Hegermann, J., Dittrich-Breiholz, O., Bornemann, M., Siebert A. … Buettner, M. (2020). Dietary lipids accumulate in macrophages and stromal cells and change the microarchitecture of mesenteric lymph nodes. Journal of Advanced Research, 24, 291-300. doi: 10.1016/j.jare.2020.04.020

Valko, O. O., & Holovatskyi, A. S. (2018). Changes in the cell squad of iliac lymph nodes of white rats in case of longterm influence of nalbufin. EUREKA: Health Sciences, 2, 8-16. doi: 10.21303/2504-5679.2018.00573

Vorhees, C. V. (2018). A Test of Dietary Monosodium Glutamate Developmental Neurotoxicity in Rats: A Reappraisal. Ann. Nutr. Metab., 73(5), 36-42. doi: 10.1159/000494781

Yakubtsova, I. V., Khilko, T. D., Savytska, I. M., Konopelniuk, V. V., Preobrazhenska, T. D., & Makai, Sh. (2016). Вплив Trigonella Foenum Graecum L. на стан імунокомпетентних органів за умов діетіндукованого ожиріння у щурів [The effect of Triogenella Foenum Graecum L. on the state of immunocompetent organs under conditions of diet-induced obesity in rats]. Scientific Journal “ScienceRise: Biological Science”, 3(3), 53-60. doi: 10.15587/2519-8025.2016.83579

Zanfirescu, A., Cristea, A. N., Nitulescu, G. M., Velescu, B. S., & Gradinaru, D. (2017). Chronic monosodium glutamate administration induced hyperalgesia in mice. Nutrients, 10(1), 1. doi: 10.3390/nu10010001

How to Cite
Mateshuk-Vatseba, L., Holovatskyi, A., Harapko, T., Foros, A., & Lytvak, Y. (2022). Changes in the structural organization of lymph nodes during short-term exposure to monosodium glutamate. Reports of Morphology, 28(4), 34-40.