@article{Savchuk_Skibo_2018, title={Characteristics of nervous tissue after modeling of focal cerebral ischemia in rats at different periods of reperfusion}, volume={24}, url={https://morphology-journal.com/index.php/journal/article/view/348}, DOI={10.31393/morphology-journal-2018-24(3)-09}, abstractNote={<p>The stroke-causing problems are extremely important in Ukraine. This makes a heavy burden not only on the health care system, but also on the whole society as a whole. That’s why we’ve studied structural and ultrastructural changes of cortical neurons and striatum of the brain and the development of delayed death of nerve cells after the modeling of the middle cerebral artery occlusion (MCAO) and post ischemic period in rats. We’ve analyzed the data at different terms after modeling of MCAO. The purpose of the study was to investigate the changes in the nervous tissue in the modeling of focal cerebral ischemia by monofilament occlusion of MCAO in rats at different periods of reperfusion. The statistical processing of primary digital experimental data was carried out using the software Statistica 6.0. It was confirmed that the 60-minute occlusion of the MCAO is an adequate model of focal ischemic brain damage in rats. Changes of locomotor activity and a tactile sensitivity were determined in rats after occlusion and after reperfusion during the post-period period. It was found that in the experimental group with a reperfusion period of 72 hours, a clear increase of the volume of the ischemic area of the brain, accompanied by significant neurological deficiency, was observed. Reduced research activity of the rats was revealed, which was shown in the decrease of the number of squares they crossed, the number of racks, the increase of acts of grooming and the duration of acts of frizings. Following ischemic brain damage, there was also a disbalance of somato-sensory functions, as evidenced by an increase in the time during which the animal took a test stimulus ("Sticky tape") from both the anterior paws when tested for tactile sensitivity (adhesive removal test). An electron microscopic study of the cortex showed that dark wrinkled neurons and enlightened swollen neurons were observed at 72 hours of post-occlusion period, indicating different ways of death of these cells. Changes in striatum were similar to changes in the cortex, which progressed with an increase in the post-occlusion period. The protocol of the serial evaluation of neurological disorders used after MCAO modeling allowed detecting long-term stable functional disorders in laboratory rats. The obtained data indicate significant changes in the structure of the cortex and striatum in the post-ischemic period and the progressive nature of these changes.</p&gt;}, number={3}, journal={Reports of Morphology}, author={Savchuk, O.I. and Skibo, G.G.}, year={2018}, month={Sep.}, pages={58-64} }